Page 120 - Fundamentals of Communications Systems
P. 120

3.34  Chapter Three

                       (b)
                                                            π
                                                 E[  p ] =   xf   (x)dx = 0               (3.49)
                                                          −π

                           Since   p is a zero mean random variable

                                                π             1     π         3     2
                                                  2                  2     2 π    π
                                   var(  p ) =   x f   (x)dx =      x dx =      =         (3.50)
                                              −π             2π   −π       3 2π    3
                       (c)
                                                                                     1
                                               ◦          ◦          ◦           ◦
                              P (Work) = P (−30 ≤   p ≤ 30 ) = F   p  (30 ) − F   p  (−30 ) =  (3.51)
                                                                                     6
                       (d) Poincaire’s theorem gives


                          P (Work 1 or Work 2 ) = P W 1 ∪ W 2 ) = P (W 1 ) + P (W 2 ) − P (W 1 ∩ W 2 ) (3.52)
                           Because of independence of the two trials


                                                P (W 1 ∩ W 2 ) = P (W 1 )P (W 2 )         (3.53)
                           consequently

                                                                        1   1    1    11
                          P (W 1 ∪ W 2 ) = P (W 1 ) + P (W 2 ) − P (W 1 )P (W 2 ) =  +  −  =  (3.54)
                                                                        6   6   36    36
                       (e) Getting your receiver to work once in N trials is the complement to the
                           event not getting your receiver to work any of N trials, i.e.,
                                                   N               N
                                                                        C
                                               P     W i  = 1 − P     W                   (3.55)
                                                                        i
                                                  i=1              i=1
                           Again by independence

                                             N         N
                                                  C           C                N
                                          P     W ) =     P (W   = (1 − P (W i ))         (3.56)
                                                  i           i
                                             i=1       i=1
                           so that
                                                  N
                                                                          N
                                              P      W i  = 1 − (1 − P (W i ))            (3.57)
                                                  i=1
                           A little exploring in Matlab shows that N ≥ 13 will give better than a 90%
                           probability of working.
   115   116   117   118   119   120   121   122   123   124   125