Page 121 - Fundamentals of Communications Systems
P. 121

Review of Probability and Random Variables  3.35

                      Problem 3.28.
                      (a) If X and Y are independent, we can compute E[XY ]as

                                                      ∞   ∞

                                          E[XY ] =          xyf XY (x, y)dxdy
                                                     −∞  −∞

                                                      ∞   ∞
                                                 =          xwf X (x) f Y (y)dxdy
                                                     −∞  −∞
                                                      ∞            ∞

                                                 =      xf X (x)dx   yf Y (y)dy
                                                     −∞           −∞
                                                 = E[X]E[Y ]
                          In general cov(X, Y ) = E[XY ] − E[X]E[Y ] = 0,   so if X and Y are
                          independent, then X and Y are uncorrelated.
                      (b) X ∈{−1, 2}    Y ∈{−1, 0, 1}
                          First, let’s compute the marginal PMFs
                                                      1   1   2                            1

                           P X (−1) =    P XY (−1, y) =  +  =       P X (2) =   P XY (2, y) =
                                                      3   3   3                            3
                                     y∈  y                                  y∈  y
                                     1             1             1
                           P Y (−1) =      P Y (0) =    P Y (1) =
                                     3             3             3
                          X and Y are independent if and only if P X (x) · P Y (y) = P XY (x, y)  ∀x, y
                          If x = 2 and y = 0,

                                                P X (2) · P Y (0)  = P XY (x, y)
                                                        1 1    1    1
                                                          ·  =    =                      (3.58)
                                                        3 3    9    3
                          X and Y are not independent.

                                       E[XY ] =    x · y · P XY (x, y)
                                                 x,y
                                                      1              1           1
                                              = 2 · 0 ·  + (−1) · (−1) ·  + (−1) · 1 ·
                                                      3              3           3
                                                    1   1
                                              = 0 +   −   = 0
                                                    3   3
                                                                 1     2

                                         E[X] =    x · P X (x) = 2 ·  − 1 ·  = 0
                                                                 3     3
                                                 x
                                                                 1     1      1

                                         E[Y ] =    y · P Y (y) = 0 ·  − 1 ·  + 1 ·  = 0
                                                                 3     3      3
                                                 y
                                     cov(X, Y ) = 0 − 0 · 0 = 0
   116   117   118   119   120   121   122   123   124   125   126