Page 123 - Fundamentals of Communications Systems
P. 123

Review of Probability and Random Variables  3.37

                          [0, 1] then an inverse function exists, i.e., x = F  −1 (u) for u ∈ [0, 1]. If U is a
                                                                     X
                          uniform random variable in [0, 1] then find the distribution of the random
                          variable X = F  −1 (u).
                                        X
                      (b) Consider a transformation of random variables, X =− ln(U )/λ. Find the
                          output PDF, when U is a random variable uniformly distributed on [0, 1].
                       (c) Use the result in (a) and the rand function in Matlab to generate a real-
                          izations of an exponential random variable, i.e., ones that have a density
                          function


                                                      λ exp[−xλ]  x ≥ 0
                                            f X (x) =                                    (3.59)
                                                      0           elsewhere
                          Hint: If U is uniform in the interval [0, 1] then 1 − U has the same distri-
                          bution. Generate 1000 realizations with λ = 1 and plot a histogram of the
                          resulting numbers.
   118   119   120   121   122   123   124   125   126   127   128