Page 177 - Fundamentals of Communications Systems
P. 177

Analog Communications Basics  5.17

                      (e) Parsevals theorem allows the power to be computed in the frequency domain
                          as
                                                                        2
                                            ∞          	       2
                                                   2       4        4
                                     P m =     |m n | = 2      +           = 0.3325      (5.30)
                                                          π 2      9π 2
                                          n=−∞
                       (f) The Matlab code
                          %
                          % M-file for EE501
                          % Problem 5.2
                          % Author: M. Fitz
                          % Last Revision: 01/29/01
                          %
                          time=linspace(-0.5,0.5,1000);
                          %
                          % e) Computing the power after filtering
                          %
                          m_1=4/pi^2;
                          m_3=4/9/pi^2;
                          p_m=2*(m_1^2+m_3^2)
                          %
                          % f) plotting the output message waveform
                          %
                          mess=2*m_1*cos(2*pi*2*time)+2*m_3*cos(2*pi*6*time);
                          % plotting
                          figure(1)
                          plot(time,mess)
                          xlabel('Time, t, seconds')
                          ylabel('m(t)')
                          produces the plot shown in Figure 5.14.
   172   173   174   175   176   177   178   179   180   181   182