Page 375 - Fundamentals of Light Microscopy and Electronic Imaging
P. 375
358 REFERENCES
Hiraoka, Y., Sedat, J. W., and Agard, D. A. (1987). The use of a charge-coupled device for quan-
titative optical microscopy of biological structures. Science 238, 36–41.
Hoffman, R. (1977). The modulation contrast microscope: principles and performance. J.
Microscopy 110, 205–222.
Hoffman, R., and Gross, L. (1975). Modulation contrast microscopy. Appl. Opt. 14, 1169–1176.
Holst, G. C. (1996). CCD Arrays, Cameras, and Displays (Bellingham, WA: SPIE Optical Engi-
neering Press).
Howell, S. B. (1992). Introduction to differential time-series astronomical photometry using
charge-coupled devices. In: Astronomical CCD Observing and Reduction Techniques,
Astronomical Society of the Pacific Conference Series, vol. 23. San Francisco pp. 105–129.
Inoué, S. (1981). Video image processing greatly enhances contrast, quality, and speed in polar-
ization-based microscopy. J. Cell Biol. 89, 346–356.
Inoué, S. (1989). Imaging of unresolved objects, superresolution, and precision of distance mea-
surement with video microscopy. Methods Cell Biol. 30, 85–112.
Inoué, S. (2001). Polarization Microscopy, in: Current Protocols in Cell Biology, in press.
Inoué, S., and Inoué, T. (2000). Direct-view high-speed confocal scanner—the CSU-10. In: Cell
Biological Applications of Confocal Microscopy (B. Matsumoto, ed.), 2nd. ed. (New York:
Academic Press).
Inoué, S., and Oldenbourg, R. (1998). Microtubule dynamics in mitotic spindle displayed by
polarized light microscopy. Mol. Biol. Cell 9, 1603–1607.
Inoué, S., and Spring, K. R. (1997). Video Microscopy: The Fundamentals, 2nd. ed. (New York:
Plenum).
James, J. (1976). Light Microscopic Techniques in Biology and Medicine (Netherlands: Martinus
Nijhof).
James, J. and Dessens, H. (1963). Immersion-refractometric observations on the solid concentra-
tion of erythrocytes. J. Cell Comp. Physiol. 60, 235–41.
Kingslake, R. (1965). Applied Optics and Optical Engineering, Volume 1. Light: Its Generation
and Modification, (New York: Academic Press).
Koehler, A. (1893). A new system of illumination for photomicrographic purposes. Z. Wiss.
Mikroskopie 10, 433–440. Translated in Royal Microscopical Society—Koehler Illumination
Centenary, 1994.
Lang, W. (1970). Nomarski differential-interference contrast system. Am. Laboratory, April
pp. 45–51.
Lang, W. (1975). Nomarski differential-interference contrast microscopy. I. Fundamentals and
experimental designs; II. Formation of the interference image; III. Comparison with phase
contrast; IV. Applications. Carl Zeiss Publication 41-210.2-5-e.
Minnaert, M. (1954). The Nature of Light and Color in the Open Air (New York: Dover).
Nathans, J. (1984). In the eye of the beholder: visual pigments and inherited variation in human
vision. Cell 78, 357–360.
Newberry, M. V. (1991). Signal-to-noise considerations for sky-subtracted data. Publ. Ast. Soc.
Pacific 103, 122–130.
Newberry, M. V. (1994a). The signal to noise connection. CCD Astronomy, summer 1994,
pp. 34–39.
Newberry, M. V. (1994b). The signal to noise connection, Part II. CCD Astronomy, fall 1994, p. 3
(corr.) and 12–15.
Newberry, M. V. (1995a). Recovering the signal. CCD Astronomy, spring 1995, pp. 18–21.
Newberry, M. V. (1995b). Dark frames. CCD Astronomy, summer 1995, pp. 12–14.
Newberry, M. V. (1995c). Pursuing the ideal flat field. CCD Astronomy, winter 1996, pp. 18–21.
Oldenbourg, R. (1996). A new view on polarization microscopy. Nature 381, 811–812.
Oldenbourg, R. (1999). Polarized light microscopy of spindles. Methods Cell Biol. 61, 175–208.
Oldenbourg, R., Terada, H., Tiberio, R., and Inoué, S. (1993). Image sharpness and contrast trans-
fer in coherent confocal microscopy. J. Microsc. 172, 31–39.
Padawer, J. (1968). The Nomarski interference-contrast microscope. An experimental basis for
image interpretation. J. Roy. Micr. Soc. 88, 305–349.