Page 195 - Fundamentals of Magnetic Thermonuclear Reactor Design
P. 195
176 Fundamentals of Magnetic Thermonuclear Reactor Design
[17] A. Nijhuis, Yu.A. Ilyin, W. Abbas, B. ten Haken, H.H.J. ten Kate, Performance of an ITER CSI
model coil conductor under transverse cyclic loading up to 40000 cycles, IEEE Trans. Appl.
Supercond. 12 (2) (2004) 1489–1494.
[18] G. Claudet, V. Kalinin, N. Mitchell, P. Roussel, N. Shatil, Design of the ITER-FEAT cryoplant
to achieve stable operation over a wide range of experimental parameters and operation sce-
narios, Fusion Eng. Des. 58–59 (2001) 205–209.
[19] V. Kalinin, R. Haange, N. Shatil, F. Millet, B. Jager, P. Bliend, et al. Design and operating fea-
tures of the ITER 4.5 K cryoplant, Advances in Cryogenic Engineering, Transaction of CEC,
vol. 49, Anchorage, Alaska, AIP Conference Proceeding, 710, 2004, 176–183.
[20] Y. Takahashi, K. Yoshida, Y. Nabara, M. Edaya, D. Bessette, N. Shatil, et al. Stability and
quench analysis of toroidal field coils for ITER, IEEE Trans. Appl. Supercond. 17 (2) (2007)
2426–2429.
[21] D. Bessette, N. Shatil, E. Zapretilina, Nuclear heat, disruption loads and other AC losses and
their impact on the ITER toroidal field coils, IEEE Trans. Appl. Supercond. 10 (1) (2000)
1074–1077.
[22] V. Amoskov, A. Belov, V. Belyakov, O. Filatov, O. Ilyasov, V. Kalinin, et al. Validation of
VINCENTA modeling based on experiment with the central solenoid model coil of the
International Thermonuclear Experimental Reactor, Plasma Devices Oper. 14 (1) (2006)
47–61.
[23] D. Bessette, E. Zapretilina, N. Shatil, Simulation of the ITER toroidal field coil operation with
the VINCENTA code, IEEE Trans. Appl. Supercond. 16 (2006) 795–798.
[24] D. Arslanova, V. Belyakov, D. Bessette, I. Gornikel, V. Kalinin, M. Kaparkova, et al. Ad-
vanced thermal–hydraulic analysis of the ITER TF magnets performed with VENECIA code
for 15MA reference scenario, Fusion Eng. Des. 88 (9–10) (2013) 1486–1490.
[25] V. Amoskov, A. Belov, V. Kukhtin, N. Shatil, S. Sytchevsky, V. Vasiliev, et al.
VINCENTA (VIN-
CENTA computer code for thermal–hydraulic simulations of cryogenic systems), in: Proc. 7th
International Conference on Engineering Problems of Thermonuclear Reactors, 2002, Saint
Petersburg, Russia, October 28–31. (in Russian).
[26] V. Kalinin, M. Kaparkova, V. Kukhtin, D. Shatil, N. Shatil, S. Sytchevsky, et al. VENECIA:
new code for simulation of thermal–hydraulics in complex superconducting systems, Bull.
Peoples’ Friendship Univ. Russia Ser. Math. Inf. Sci. Phys. 3 (2) (2010) 127–132.
[27] HEPAK v3.4, Computer program for calculating thermophysical properties of helium from
fundamental state equations. Cryodata Inc, 1999. http://www.cryodata.com.
[28] NIST. NIST Reference Fluid Thermodynamic and Transport Properties Database – REF-
PROP. Standard Reference Database 23, Ver. 9.1. 2013, https://www.nist.gov/sites/default/
files/documents/srd/REFPROP9.PDF.
[29] R. Vallcorba, B. Rousset, J.-M. Poncet, H.S. Chang, A. Forgeas, R. Maekawa, et al. ITER
cryogenic system validation tests at HELIOS test facility, AIP Conf. Proc., Adv. Cryog.
Eng, 2012.
[30] B. Lagier, C. Hoa, B. Rousset, Validation of an EcosimPro model for the assessment of
two heat load smoothing strategies in the HELIOS experiment, Cryogenics 62 (2014)
60–70.
[31] R. Maekawa, S. Takami, A. Iwamoto, H.S. Chang, A. Forgeas, M. Chalifour, et al. Pro-
cess analyses of ITER toroidal field structure cooling scheme, Cryogenics 63 (2014)
220–230.