Page 194 - Fundamentals of Magnetic Thermonuclear Reactor Design
P. 194

Superconducting Magnet Systems  Chapter | 5    175


             using a common regulator was demonstrated. The proposed feedback control
             system enabled a 30-fold decrease in the peak-to-peak heat power transferred
             to the cryoplant [34].


             REFERENCES

                [1]  I.K. Butkevich, D.P. Ivanov, G.I. Kiknadze, et  al., in: N.A. Chernoplekov (Ed.),
                                                       (Superconducting Magnet Sys-
                 tems for Tokamaks), RRC Kurchatov Institute, IzdAT Publishers, Moscow, 1997 168 pp. (in
                 Russian).
                [2]  L. Bottura, A practical fit for the critical surface of NbTi, IEEE Trans. Appl. Supercond. 10 (1)
                 (2000) 1054.
                [3]  Design requirements and guidelines level 1, Magnet electrical and superconducting design
                 criteria, in: ITER Final Design Report, IAEA Vienna, July 2001.
               [4]  Y. Song, W. Wu, Sh. Du, et al. Tokamak Engineering Mechanics, Springer-Verlag, Berlin,
                 Heidelberg,  (2014) 241 pp.
               [5]  P. Bruzzone, 30 years of conductors for fusion: a summary and perspectives, IEEE Trans.
                 Appl. Supercond. 16 (2) (2006) 839–844.
               [6]  I. Abdioukhanov, V. Beliakov, N. Cheverev, The development of ITER TF coil heat treatment
                 conditions, IEEE Trans. Appl. Supercond. 12 (1) (2002) 1105–1108.
               [7]  V. Pantsyrnyi, A. Shikov, A. Nikulin, et al. Design features of internal tin superconductors for
                 ITER magnetic system, IEEE Trans. Magn. 32 (4) (1996) 2862–2865.
               [8]  V.E. Sytnikov, A.V. Taran, V.A. Mitrokhin, et al. The long-length line for jacketing cable-in-
                 conduit conductors, Fusion Eng. Des. 12 (1999) 209–216.
               [9]  A. Ulbricht, L.L. Duchateau, W.F. Fietz, et al. The ITER toroidal field model coil project, Fu-
                 sion Eng. Des. 73 (2005) 189–327.
             [10]  P.N. Hauberreich, P. Komarek, S. Shimamoto, et al., in: D.S. Beard, W. Klose, S. Shimamoto,
                 G. Vecsey (Eds.), The IEA large coil task development of superconducting toroidal field mag-
                 nets for fusion power, Fusion Eng. Des. 7 (1, 2) (1988) 1–232.
             [11]  N.S. Cheverev, V.A. Glukhikh, O.G. Filatov, et  al.

                 (Fabrication and results of testing of toroidal field conductor insert coil for ITER), Probl. At.
                 Sci. Technol. Series Electrophys Apparatus, Professional Publishers, St. Petersburg 2 (28)
                 (2004) 3–7 (in Russian).
             [12]  D. Bessette, L. Bottura, A. Devred, et al. Test results from the PF conductor insert coil and
                 implications for the ITER PF system, IEEE Trans. Appl. Supercond. 19 (3) (June 2009)
                 1525–1531.
             [13]  N. Mitchell, Summary, assessment and implications of the ITER model test results, Fusion
                 Eng. Des. 66–68 (2003) 971–993.
             [14]  N. Martovetsky, P. Michael, J. Minervini, et al. Test of the ITER central solenoid model coil
                 and CS insert, IEEE Trans. Appl. Supercond. 12 (1) (2002) 600–605.
             [15]  N. Martovetsky, M. Takayasu, J. Minervini, et al. Test of the ITER TF insert and central sole-
                 noid model coil, IEEE Trans. Appl. Supercond. 13 (2) (2003) 1441–1446.
             [16]  I. Rodin, T. Gurieva, S. Egorov, et al. The results of the toroidal field conductor insert (TFCI)
                 non-destructive and destructive examinations, IEEE Trans. Appl. Supercond. 16 (2) (2006)
                 803–806.
   189   190   191   192   193   194   195   196   197   198   199