Page 159 - Fundamentals of Probability and Statistics for Engineers
P. 159

142                    Fundamentals of Probability and Statistics for Engineers

           For independent X 1  and X 2 ,
                                Z  1  Z  x 2 y
                        F Y …y†ˆ         f  …x 1 †f  …x 2 †dx 1 dx 2 ;
                                         X 1    X 2
                                 0   0
                                Z  1
                              ˆ     F X 1 …x 2 y†f  …x 2 †dx 2 ;  for y > 0;  …5:49†
                                            X 2
                                 0
                              ˆ 0;  elsewhere:


           The pdf of Y  is thus given by, on differentiating Equation (5.49) with respect
           to y,

                              8
                                Z  1
                              >
                              <     x 2 f  …x 2 y†f  …x 2 †dx 2 ;  for y > 0;
                      f …y†ˆ     0    X 1     X 2                       …5:50†
                       Y
                              >
                                0;  elsewhere;
                              :
           and, on substituting Equation (5.48) into Equation (5.50), it takes the form
                         8  Z  1                 1
                               x 2 e  e  dx 2 ˆ      ;  for y > 0;
                         >        
x 2 y 
x 2
                         <                          2
                  f …y†ˆ    0                 …1 ‡ y†                   …5:51†
                   Y
                         >
                         :
                           0;  elsewhere:
           Again, it is easy to check that
                                       1
                                     Z
                                        f …y†dy ˆ 1:
                                         Y
                                      0
             Example 5.13. To show that it is elementary to obtain solutions to problems
           discussed in this section when X 1 , X 2 ,...,  and  X n  are discrete, consider  again
           Y ˆ  X 1 /X 2  given that X 1  and X 2  are discrete and  their  joint  probability mass
           function (jpmf) p  (x 1 , x 2 ) is tabulated in Table 5.1. In this case, the pmf of Y
                         X 1 X 2
           is easily determined by assignment of probabilities p  (x 1 , x 2 ) to the corres-
                                                        X 1 X 2
           ponding values of y ˆ  x 1 /x 2 . Thus, we obtain:
                                               1
                                8
                                  0:5;  for y ˆ ;
                                >
                                >
                                >
                                >              2
                                >
                                  0:24 ‡ 0:04 ˆ 0:28;  for y ˆ 1;
                                >
                                >
                                >
                                <
                         p …y†ˆ                 3
                          Y       0:04;  for y ˆ ;
                                >
                                >               2
                                >
                                >
                                  0:06;  for y ˆ 2;
                                >
                                >
                                >
                                >
                                  0:12;  for y ˆ 3:
                                :
                                                                            TLFeBOOK
   154   155   156   157   158   159   160   161   162   163   164