Page 169 - Fundamentals of Probability and Statistics for Engineers
P. 169

152                    Fundamentals of Probability and Statistics for Engineers

           Equation (5.68) now applies and we have
                                         
1
                                                       
1
                         f   …y 1 ; y 2 †ˆ f ‰g …y†ŠjJ 1 j‡ f ‰g …y†ŠjJ 2 j;  …5:74†
                          Y 1 Y 2      X  1         X  2
           where
                                                         2   2
                                                1     
x ‡ x
                         f …x†ˆ f  …x 1 † f  …x 2 †ˆ  exp  1  2  ;      …5:75†
                          X
                                        X 2
                                 X 1
                                                2        2
                                      qg    qg
                                        
1    
1
                                        11    11


                                      qy 1             y 1

                                                  ˆ
     2  :           …5:76†
                                            qy 2
                            J 1 ˆ J 2 ˆ
                                       qg 
1  qg 
1    1 ‡ y 2
                                        12
                                              12

                                      qy 1  qy 2
           On substituting Equations (5.75) and (5.76) into Equation (5.74), we have
                                          2 2    2
                           y 1    2      y y ‡ y 1
                                          1 2
           f   …y 1 ; y 2 †ˆ        exp 
           ;
            Y 1 Y 2          2   2              2
                         1 ‡ y            2…1 ‡ y †
                             2                  2
                                       2
                           y 1      
y 1
                     ˆ          exp      ;  for y 1   0; and 
1 < y 2 < 1;
                             2
                        …1 ‡ y †     2
                             2
                     ˆ 0;  elsewhere:                                   …5:77†
                                                                       (y 1 ) and
             We note that the result can again be expressed as the product of f Y 1
           f  (y 2 ), with
            Y 2
                                   8
                                              2
                                           
y
                                   >          1
                                   <  y 1 exp   ;  for y 1   0;
                          f  …y 1 †ˆ        2
                           Y 1
                                   >
                                     0;  elsewhere;
                                   :
                                      1
                             …y 2 †ˆ       ;  for 
1 < y 2 < 1:
                          f Y 2          2
                                    …1 ‡ y †
                                         2
           Thus random variables Y 1  and Y 2  are again independent in this case where Y 1
           has the so-called Raleigh distribution and Y 2 is Cauchy distributed. We remark
           that  the factor  (1/  ) is assigned  to  f  (y 2 ) to  make the area  under  each  pdf

                                           Y 2
           equal to 1.



             Example 5.20. Let us determine the pdf of Y  considered in Example 5.11 by

           using the formulae developed in this section. The transformation is
                                       Y ˆ X 1 X 2 :                    …5:78†
                                                                            TLFeBOOK
   164   165   166   167   168   169   170   171   172   173   174