Page 169 - Fundamentals of Probability and Statistics for Engineers
P. 169
152 Fundamentals of Probability and Statistics for Engineers
Equation (5.68) now applies and we have
1
1
f
y 1 ; y 2 f g
yjJ 1 j f g
yjJ 2 j;
5:74
Y 1 Y 2 X 1 X 2
where
2 2
1
x x
f
x f
x 1 f
x 2 exp 1 2 ;
5:75
X
X 2
X 1
2 2
qg qg
1
1
11 11
qy 1 y 1
2 :
5:76
qy 2
J 1 J 2
qg
1 qg
1 1 y 2
12
12
qy 1 qy 2
On substituting Equations (5.75) and (5.76) into Equation (5.74), we have
2 2 2
y 1 2 y y y 1
1 2
f
y 1 ; y 2 exp
;
Y 1 Y 2 2 2 2
1 y 2
1 y
2 2
2
y 1
y 1
exp ; for y 1 0; and
1 < y 2 < 1;
2
1 y 2
2
0; elsewhere:
5:77
(y 1 ) and
We note that the result can again be expressed as the product of f Y 1
f (y 2 ), with
Y 2
8
2
y
> 1
< y 1 exp ; for y 1 0;
f
y 1 2
Y 1
>
0; elsewhere;
:
1
y 2 ; for
1 < y 2 < 1:
f Y 2 2
1 y
2
Thus random variables Y 1 and Y 2 are again independent in this case where Y 1
has the so-called Raleigh distribution and Y 2 is Cauchy distributed. We remark
that the factor (1/ ) is assigned to f (y 2 ) to make the area under each pdf
Y 2
equal to 1.
Example 5.20. Let us determine the pdf of Y considered in Example 5.11 by
using the formulae developed in this section. The transformation is
Y X 1 X 2 :
5:78
TLFeBOOK