Page 171 - Fundamentals of Probability and Statistics for Engineers
P. 171

154                    Fundamentals of Probability and Statistics for Engineers

           PROBLEMS
           5.1  Determine the Probability distribution function (PDF) of Y ˆ  3X 
 1 if
              (a) Case 1:
                                        0;  for x < 3;
                                      8
                                      >
                                      >
                                        1
                                      <
                               F X …x†ˆ   ;  for 3   x < 6;
                                        3
                                      >
                                      >
                                        1;  for x   6:
                                      :
              (b) Case 2:
                                       0;  for x < 3;
                                     8
                                     >
                                     < x
                              F X …x†ˆ  
 1;  for 3   x < 6;
                                       3
                                     >
                                     :
                                       1;  for x   6:
           5.2  Temperature C measured in degrees Celsius is related to temperature X in degrees
              Fahrenheit by C ˆ  5(X 
  32)/9. Determine the probability density function (pdf) of
              C if X  is random and is distributed uniformly in the interval (86, 95).
           5.3  The  random  variable  X   has  a  triangular  distribution  as  shown  in  Figure  5.22.
              Determine the pdf of Y ˆ  3X ‡ 2.
           5.4  Determine F Y   (y) in terms of F X  (x) if Y ˆ  X  1/2 , where F X  (x) ˆ  0,  x <  0.
                                                                            X
           5.5  A random variable Y  has a ‘log-normal’ distribution if it is related to X  by Y ˆ  e ,
              where X  is normally distributed according to
                                        "         #
                                  1      
…x 
 m† 2
                        f …x†ˆ     1=2  exp   2    ;  
1 < x < 1
                         X
                                …2 †        2
              Determine the pdf of Y  for m ˆ  0 and   ˆ  1.
                                          (x)
                                        f X




                                        1






                                                                 x
                              –1                    1

                          Figure 5.22 Distribution of X, for Problem 5.3







                                                                            TLFeBOOK
   166   167   168   169   170   171   172   173   174   175   176