Page 168 - Fundamentals of Probability and Statistics for Engineers
P. 168
Functions of Random Variables 151
Hence, Equation (5.67) leads to
1
1
f
y 1 ; y 2 f g
yf g
yjJj
Y 1 Y 2 X 1 1 X 2 2
" 2 # " 2 #
1
y 1 y 2
y 1
y 2
exp exp
4 8 8
2
2
1
y y
exp 1 2 ;
1;
1 <
y 1 ; y 2 <
1; 1:
5:72
4 4
It is of interest to note that the result given by Equation (5.72) can be written as
f
y 1 ; y 2 f
y 1 f
y 2 ;
5:73
Y 1 Y 2 Y 1 Y 2
where
1
y 2 1
f
y 1 exp ;
1 < y 1 < 1;
Y 1 1=2 4
4
1
y 2 2
f
y 2 exp ;
1 < y 2 < 1;
Y 2 1=2 4
4
implying that, although Y 1 and Y 2 are both functions of X 1 and X 2 , they are
independent and identically and normally distributed.
Example 5.19. Problem: for the same distributions assigned to X 1 and X 2 in
2 1/2
2
Example 5.18, determine the jpdf of Y 1 (X X ) and Y 2 X 1 /X 2 .
1 2
Answer: let us first note that Y 1 takes values only in the positive range.
Hence,
f
y 1 ; y 2 0; y 1 < 0:
Y 1 Y 2
For y 1 0, the transformation y g(x) admits two solutions. They are:
1
x 11 g
y y 1 y 2 ;
11 2 1=2
1 y
2
1
x 12 g
y y 1 ;
12 2 1=2
1 y
2
and
1
x 21 g
y
x 11 ;
21
1
x 22 g
y
x 12 :
22
TLFeBOOK