Page 168 - Fundamentals of Probability and Statistics for Engineers
P. 168

Functions of Random Variables                                   151

           Hence, Equation (5.67) leads to
                                     
1
                            
1
           f   …y 1 ; y 2 †ˆ f  ‰g …y†Šf  ‰g …y†ŠjJj
            Y 1 Y 2      X 1  1   X 2  2
                             "          2  #  "        2  #
                        1     
… y 1 ‡ y 2 †  
… y 1 
 y 2 †
                     ˆ    exp             exp
                        4          8               8
                                  2
                                      2
                        1      
… y ‡ y †
                     ˆ    exp     1   2  ;  …
1; 
1† < … y 1 ; y 2 † < …1; 1†: …5:72†
                        4         4
           It is of interest to note that the result given by Equation (5.72) can be written as
                               f    …y 1 ; y 2 †ˆ f  …y 1 †f  …y 2 †;   …5:73†
                                Y 1 Y 2      Y 1   Y 2
           where

                                   1        
y 2 1
                        f  …y 1 †ˆ     exp      ;  
1 < y 1 < 1;
                         Y 1        1=2     4
                                 …4 †
                                   1        
y 2 2
                        f  …y 2 †ˆ     exp      ;  
1 < y 2 < 1;
                         Y 2        1=2     4
                                 …4 †
           implying that, although Y 1  and Y 2  are both functions of  X 1  and X 2 , they are
           independent and identically and normally distributed.




             Example 5.19. Problem: for the same distributions assigned to X 1  and X 2  in
                                                      2 1/2
                                                 2
           Example 5.18, determine the jpdf of Y 1 ˆ  (X ‡  X )  and Y 2 ˆ  X 1 /X 2 .
                                                 1    2
             Answer: let  us first  note that  Y 1 takes values only in the positive range.
           Hence,
                                 f   …y 1 ; y 2 †ˆ 0;  y 1 < 0:
                                  Y 1 Y 2
           For y 1    0, the transformation y ˆ  g(x) admits two solutions. They are:
                                       
1
                                 x 11 ˆ g …y†ˆ   y 1 y 2  ;
                                       11          2 1=2
                                              …1 ‡ y †
                                                   2
                                       
1
                                 x 12 ˆ g …y†ˆ   y 1   ;
                                       12          2 1=2
                                              …1 ‡ y †
                                                   2
           and
                                         
1
                                   x 21 ˆ g …y†ˆ
x 11 ;
                                         21
                                         
1
                                   x 22 ˆ g …y†ˆ
x 12 :
                                         22





                                                                            TLFeBOOK
   163   164   165   166   167   168   169   170   171   172   173