Page 170 - Fundamentals of Probability and Statistics for Engineers
P. 170

Functions of Random Variables                                   153

           In order to conform with conditions stated in this section, we augment Equa-
           tion (5.78) by some simple transformation such as

                                         Z ˆ X 2 :                      …5:79†

             The random variables Y  and Z now play the role of Y 1  and  Y 2  in Equation
           (5.67) and we have

                                                   
1
                                           
1
                           f  YZ …y; z†ˆ f  X 1 X 2 ‰g …y; z†; g …y; z†ŠjJj;  …5:80†
                                           1
                                                   2
           where
                                          y
                                  
1
                                 g …y; z†ˆ ;
                                  1        z
                                  
1
                                 g …y; z†ˆ z;
                                  2

                                              
       1
                                           1     y
                                                z   ˆ :
                                                 2
                                       J ˆ z          z
                                           0    1

           Using specific forms of f  (x 1 ) and f  (x 2 ) given in Example (5.11), Equation
                                X 1        X 2
           (5.80) becomes

                                   y        1      2y  2 
 z

                     f  YZ …y; z†ˆ f  f  …z†      ˆ         ;
                                   z   X 2        z     2z
                                X 1
                                            z
                               y…2 
 z†                                 …5:81†
                             ˆ         ;  for 0   y   2; and y   z   2;
                                  z 2
                             ˆ 0;  elsewhere:
             Finally, pdf f Y   (y) is found by performing integration of Equation (5.81) with
           respect to z:
                                                  2
                               Z  1             Z   y…2 
 z†
                        f …y†ˆ     f  YZ …y; z† dz ˆ   2    dz;
                         Y
                                 
1              y    z
                             ˆ 2 ‡ y…ln y 
 1 
 ln 2†;  for 0   y   2;
                             ˆ 0;  elsewhere:
           This result agrees with that given in Equation (5.47) in Example 5.11.

           REFERENCE

           Courant,  R.,  1937,  Differential and Integral Calculus,  Volume  II,  Wiley-Interscience,


            New York.






                                                                            TLFeBOOK
   165   166   167   168   169   170   171   172   173   174   175