Page 88 - Fundamentals of Probability and Statistics for Engineers
P. 88

Random Variables and Probability Distributions                   71
           3.13  For each of the joint probability mass functions (jpmf), p XY   (x, y), or joint prob-
               ability density functions (jpdf), f  XY   (x, y), given below (cases 1–4), determine:
               (a) the marginal mass or density functions,
               (b) whether the random variables are independent.

               (i)  Case 1

                                        0:5;  for …x; y†ˆ…1; 1†;
                                      8
                                      >
                                      >
                                        0:1;  for …x; y†ˆ…1; 2†;
                                      >
                                      <
                             p XY …x; y†ˆ
                                        0:1;  for …x; y†ˆ…2; 1†;
                                      >
                                      >
                                      >
                                      :
                                        0:3;  for …x; y†ˆ…2; 2†:
               (ii)  Case 2:
                                 a…x ‡ y†;  for 0 < x   1; and 1 < y   2;

                      f  …x; y†ˆ
                       XY
                                 0;  elsewhere:
               (iii)  Case 3
                                        …x‡y†
                                      e    ;  for …x; y† > …0; 0†;
                           f  XY …x; y†ˆ
                                      0;  elsewhere:
               (iv)  Case 4
                                      …x‡y†
                             4y…x   y†e   ;  for 0 < x < 1; and 0 < y   x;
                  f  XY …x; y†ˆ
                             0;  elsewhere:
           3.14  Suppose X  and Y  have jpmf
                                        0:1;  for …x; y†ˆ…1; 1†;
                                      8
                                      >
                                      >
                                      >
                                      < 0:2;  for …x; y†ˆ…1; 2†;
                             p XY …x; y†ˆ
                                        0:3;  for …x; y†ˆ…2; 1†;
                                      >
                                      >
                                      >
                                      :
                                        0:4;  for …x; y†ˆ…2; 2†:
               (a)  Determine marginal pmfs of X and Y.
               (b)  Determine P(X ˆ  1).
               (c)  Determine P(2X    Y ).
           3.15  Let X 1 , X 2 , and X 3  be independent random variables, each taking values   1 with
               probabilities 1/2. Define random variables Y 1 , Y 2 , and Y 3  by
                             Y 1 ˆ X 1 X 2 ;  Y 2 ˆ X 1 X 3 ;  Y 3 ˆ X 2 X 3
               Show that any two of these new random variables are independent but that Y 1 , Y 2 ,
               and Y 3 are not independent.
           3.16  The random  variables X  and  Y  are distributed  according to  the jpdf  given  by
               Case 2, in Problem 3.13(ii). Determine:
               (a) P9X   0:5 \ Y > 1:0).
                         1
               (b) P9XY < ).
                         2




                                                                            TLFeBOOK
   83   84   85   86   87   88   89   90   91   92   93