Page 84 - Fundamentals of Probability and Statistics for Engineers
P. 84

Random Variables and Probability Distributions                   67

           PROBLEMS
           3.1  For each of the functions given below, determine constant a so that it possesses all
              the properties of a probability distribution function (PDF). Determine, in each case,
              its associated probability density function (pdf) or probability mass function (pmf)
              if it exists and sketch all functions.
              (a) Case 1:

                                          0;  for x < 5;
                                   F…x†ˆ
                                          a;  for x   5:
              (b) Case 2:
                                       8
                                         0;  for x < 5;
                                       >
                                         1
                                       <
                                 F…x†ˆ    ;  for 5   x < 7;
                                         3
                                       >
                                         a;  for x   7:
                                       :
              (c) Case 3:
                          8
                            0;  for x < 1;
                          >
                             k
                          <
                    F…x†ˆ   X     j
                               1=a ;  for k   x < k ‡ 1; and k ˆ 1; 2; 3; ... :
                          >
                          :
                            jˆ1
              (d) Case 4:

                                       0;  for x   0;
                               F…x†ˆ
                                       1   e  ax ;  for x > 0:
              (e) Case 5:
                                      8
                                        0;  for x < 0;
                                      <
                                         a
                                F…x†ˆ   x ;  for 0   x   1;
                                        1;  for x > 1:
                                      :
              (f) Case 6:
                                   8
                                     0;  for x < 0;
                                   <      p
                                           
                             F…x†ˆ   a sin  1  x;  for 0   x   1;
                                     1;  for x > 0:
                                   :
              (g) Case 7:
                                    0;  for x < 0;

                            F…x†ˆ              1
                                    a…1   e  x=2 †‡ ;  for x   0:
                                               2
           3.2 For each part of Problem 3.1, determine:
              (a)  P(X    6);
                   1
              (b)  P( <  X    7).
                   2



                                                                            TLFeBOOK
   79   80   81   82   83   84   85   86   87   88   89