Page 79 - Fundamentals of Probability and Statistics for Engineers
P. 79

62                     Fundamentals of Probability and Statistics for Engineers

           which is expected. It gives the relationship between the joint jpmf and the
           conditional mass function. As we will see in Example 3.9, it is sometimes more
           convenient to derive joint mass functions by using Equation (3.35), as condi-
           tional mass functions are more readily available.
             If random variables X  and  Y are independent, then the definition of inde-
           pendence, Equation (2.16), implies

                                    p XY …xjy†ˆ p …x†;                  …3:36†
                                               X
           and Equation (3.35) becomes

                                  p XY …x; y†ˆ p …x†p …y†:              …3:37†
                                             X
                                                  Y
           Thus, when, and only when, random variables X  and Y are independent, their
           jpmf is the product of the marginal mass functions.
             Let  X   be  a  continuous  random  variable.  A  consistent  definition  of  the
           conditional density function  of  X  given  Y ˆ y, f  9xjy),  is  the  derivative  of
                                                     XY
           its corresponding conditional distribution function. Hence,

                                            dF XY …xjy†
                                  f  XY …xjy†ˆ       ;                  …3:38†
                                                dx

                      j
           where F XY   (x y) is defined in Equation (3.33). To see what this definition leads
           to, let us consider
                                          P…x 1 < X   x 2 \ y 1 < Y   y 2 †
              P…x 1 < X   x 2 jy 1 < Y   y 2 †ˆ                     :   …3:39†
                                                P…y 1 < Y   y 2 †

           In terms of jpdf f  (x, y), it is given by
                          XY
                                      y 2  x 2              y 2
                                    Z   Z                 Z  Z  1
           P…x 1 < X   x 2 jy 1 < Y   y 2 †ˆ  f  …x;y†dxdy       f  …x;y†dxdy
                                            XY                    XY
                                                               1
                                     y 1  x 1              y 1
                                    Z   Z                 Z
                                      y 2  x 2              y 2
                                  ˆ        f   …x;y†dxdy     f …y†dy:   …3:40†
                                            XY                Y
                                     y 1  x 1              y 1
             By setting x 1 ˆ 1, x 2 ˆ x, y 1 ˆ y,a nd y 2 ˆ y ‡  y,  and by taking the limit
            y ! 0,  Equation (3.40) reduces to
                                          Z  x
                                              f XY …u; y† du
                               F XY …xjy†ˆ   1          ;               …3:41†
                                               f …y†
                                                Y
                            6ˆ
           provided that f (y)    0.
                        Y






                                                                            TLFeBOOK
   74   75   76   77   78   79   80   81   82   83   84