Page 338 - Fundamentals of Reservoir Engineering
P. 338

REAL GAS FLOW: GAS WELL TESTING                              273


                     EXERCISE 8.2 SOLUTION

               1)    The Essis-Thomas combination of equations (8.39) and (8.32) can be expressed in
                     more practical terms as


                       m D (MBH)
                       0.08
                                                                                4
                                                                                        1
                       0.07

                       0.06


                       0.05

                       0.04


                       0.03

                       0.02


                       0.01
                            0                        0.005                     0.010            t  DA

                     Fig. 8.11  MBH chart for the indicated 4:1 rectangular geometry for t DA  < .01 (After
                                                15
                                Earlougher, et.al )

                                                       n
                          () ( )
                                           2


                        m p −  m p wf n  − FQ = 1637T      ∆ Q log t − t j 1 ) Q log φµ k  i  w 2  − 3.23 .87S
                                                                        +
                                                                                               +

                                           n
                                                                           n
                            i
                                                               ( n
                                                            j
                                                                     −
                                                kh
                                                                                 ( ) cr



                                                      j1
                                                       =
                     or
                          () ( )
                        mp −   mp  wf  n  − FQ 2 n  n  ∆ Q j                  k
                            i
                                                                                          +

                                                           ( n
                                                                            ( ) c r
                                 Q n         = m     n  log t − t j 1  ) m log+     φµ  i  w 2  − 3.23 .87S       (8.49)
                                                 j1 Q
                                                                −

                                                 =
                                                                   n ∆ Q
                                                       2
                     Thus a plot of (m(p ) m(p−  wf n  ) FQ )/ Q versus   n  j  log(t − t )should be linear with
                                                  −
                                                                                 j 1
                                                                             n
                                       i
                                                           n
                                                       n
                                                                   j1 Q
                                                                                  −
                                                                   =
                                                                     k
                     slope m = 1637 T/kh and intercept = m(log            −  3.23 +  .87S) from which
                                                                   ( ) cr
                                                                 φµ      2
                                                                       i  w
                     values of k and S can be calculated. In this type of analysis the value of F must be
                     obtained by trial and error until a straight line is achieved. The analysis is shown in
                     table 8.6 and the plot as fig. 8.12.
   333   334   335   336   337   338   339   340   341   342   343