Page 909 - Fundamentals of Water Treatment Unit Processes : Physical, Chemical, and Biological
P. 909

864                                                                        Appendix H: Dissolved Gases


              Example H.9 Carbon Dioxide Concentration         standard-state free energy of reaction and the equilibrium con-
              at Sea Level at 208C                             stant (Henry’s constant in this case) holds good, i.e.,

                 1. Determine the partial pressure of carbon dioxide at                       D

                   sea level.                                                   DG ¼ RT ln H  i            (H:16)
                                                                                   R
                     From Table H.1, the mole fraction of carbon
                   dioxide in the atmosphere at sea level is 0.000314,
                                                               where
                   i.e., n(CO2)=n ¼ 0.000314 mol carbon dioxide=mol
                                                                  DG is the standard-state free energy of reaction (J=mol)

                   air. Apply Dalton’s law, i.e., Equation H.4,     R
                                                                  R is the gas constant, i.e., 8.314510 J=mol
                                n(CO 2 )                          T is the absolute temperature (K)
                                     p(air, sea level)
                                n(air)
                        p(CO 2 ) ¼
                                                               and,
                              ¼ 0:000314   1:00 atm
                              ¼ 0:000314 atm
                                                                        X                X
                                                                                             DG (reactants)  (H:17)

                                                                    R
                                                                              f
                                                                 DG ¼      DG (products)       f
                 2. Look up Henry’s constant
                   From Table H.5,
                                                               where
                                   1688 mg CO =LH 2 O             DG (product i) is the standard-state free energy of forma-

                      S                      2                      f
                     H (CO 2 ,20 C) ¼
                                        atm CO 2                    tion for product i (J=mol)
                                                                  DG (reactant i) is the standard-state free energy of forma-

                                                                    f
                 3. Apply Henry’s law                               tion for reactant i (J=mol)
                   Knowing Henry’s constant and the partial pressure
                   of CO 2 , the calculation is,
                                                                  In practice, while DG data for the gas state are available in

                                                                                  f
                                                               Lide (1996) for many substances, only a few data are given
              C(CO 2 , sea level) ¼ H S    p(CO 2 )
                                CO 2                           for the aqueous state. Some data have been compiled, how-
                              1688 mg CO =LH 2 O
                                         2                     ever, by Pankow (1991) and by Snoeyink and Jenkins (1980).
                            ¼                     0:000314 atm
                                   atm CO 2                    Therefore, if thermodynamic data are available, i.e., DG for

                                                                                                            f
                                   mg CO                       both the gas state and the aqueous state, H can be calculated.
                                                                                                 D
                            ¼ 0:53      2                                                        i
                                   LH 2 O                      How to do this is illustrated in Example H.11 for carbon
                                                               dioxide.
              Comments
              Using Table H.5 as the source for Henry’s constant data,
              the calculation is straight-forward.
                                                                  Example H.11 Thermodynamics of Carbon
                                                                  Dioxide Equilibrium (Modified from Sawyer
              Example H.10 Application of Henry’s Law             and McCarty, 1967)
              Calculate the concentration of carbon dioxide in water at  Determine for carbon dioxide the equilibrium constant
              58C in mol=L at a pressure of 4.0 atm CO 2 (reported  between the gas and aqueous phases at 258C.
              pressure of bottling by Silberberg, 1996, p. 479).
                                                                    1. Tabulate thermodynamic data,
              Solution
                 1. Apply Henry’s law
              C(CO 2 , bottle) ¼ H S    p(CO 2 )
                             CO 2
                                                               Variable    CO 2 (aq) -->  CO 2 (g)  Reaction at 298.15 K
                           1688 mg CO =LH 2 O
                                      2
                         ¼                     4:0 atm         DG (298.15 K)   386.02 a   394.373 kJ=mol b  DG ¼ 8.35 kJ=mol


                                atm CO 2                         f                                  R
                                mg CO                          DH (298:15 K)   413.26 b   393.51 kJ=mol b  DH ¼ 19.75 kJ=mol


                                                                                                    R
                                                                 f
                         ¼ 6752       2                                          b              b
                                 LH 2 O                        S (298:15 K)  119.36   213.785 kJ=mol  DS ¼ 94.43 kJ=mol K


                                                                                                   R
                                mol CO 2                       a
                         ¼ 0:15                   (ExH:10:1)     Weast (1978, p. D-78).
                                 LH 2 O                        b
                                                                 Lide (1996, p. 5–64).
            H.2.9.1  Equilibrium Constants from
                    Thermodynamic Data
                                                                    2. Write the equation for the reaction,
            When equilibrium exists between the gas state and the aqueous
            state, as it must for Henry’s law to be valid, the free energy of
            the reaction is zero and, thus, the general relation between  CO 2 (aq) ! CO 2 (g) DG ¼ 8.35 J=mol

                                                                                           R
   904   905   906   907   908   909   910   911   912   913   914