Page 118 - gas transport in porous media
P. 118

111
                           Chapter 6: Conservation Equations
                                                          i = 1, 2, 3 ,
                                                                     A = 1, 2, ... , N − 1 (6.212)
                             BC.2
                                     b AE (r +   i ) = b AE (r) ,
                           The derivation of Eqs. (6.210) and (6.211) requires the use of simplifications of
                           the form
                                                          γ                γ
                                             ∇ b EA ·∇ c Aγ    =∇b EA ·∇ c Aγ           (6.213)
                           which result from the inequality
                                                        γ                   γ
                                            b EA · ∇∇ c Aγ       ∇b EA ·∇ c Aγ          (6.214)
                           The basis for this inequality is the separation of length scales indicated by Eq. (6.117),
                           and a detailed discussion is available elsewhere (Whitaker, 1999). One should keep in
                           mind that the boundary value problem given by Eqs. (6.210) through (6.212) applies
                           to all N − 1 species and that the N − 1 concentration gradients are independent. This
                           latter condition allows us to obtain
                                          E=N−1


                                                    γ
                                  0 =∇ ·        D AE   ∇b ED  ,  D = 1, 2, ... , N − 1  (6.215)
                                           E=1
                                        E=N−1

                                                       γ                γ
                                      −       n γκ · D AE   ∇b ED = n γκ  D AD   ,at A γκ  (6.216)
                                         E=1
                                  BC.1    D = 1, 2, ... , N − 1,


                             Periodicity:  b AD (r +   i ) = b AD (r), i = 1, 2, 3, D = 1, 2, ... , N − 1  (6.217)
                           At this point it is convenient to expand the closure problem for species A in order to
                           obtain
                           First Problem for Species A
                                      3
                                           γ             γ −1    γ

                               0 =∇ ·  D AA    ∇b AA +  D AA     D AB   ∇b BA           (6.218a)
                                                                                         4

                                          γ −1     γ                 γ −1       γ

                                   +  D AA     D AC   ∇b CA + ... +  D AA     D A, N−1   ∇b N−1, A
                                                                 γ −1      γ

                                  BC.  − n γκ ·∇b AA − n γκ ·  D AA     D AB   ∇b BA   (6.218b)
                                                    γ −1      γ

                                       − n γκ ·  D AA     D AC   ∇b CA − ... .
                                                    γ −1        γ

                                       − n γκ ·  D AA     D A, N−1   ∇b N−1, A = n γκ ,  at A γκ
                               Periodicity:  b DA (r +   i ) = b DA (r) ,  i − 1, 2, 3 ,  D = 1, 2, ... , N − 1
                                                                                        (6.218c)
   113   114   115   116   117   118   119   120   121   122   123