Page 251 - gas transport in porous media
P. 251

248
                                                                               p
                             The DGM permeation molar flux density of component i, N , is described by
                                                                               i
                           Darcy law                                        Šolcová and Schneider
                                                  p       dc T
                                                N =−y i B      i = 1, ... , n           (14.13)
                                                  i
                                                          dx
                           with identical effective permeability coefficients, B, for all gas mixture components:
                                                  B = B o p/η  i = 1, ... , n           (14.14)
                           B o is the third DGM transport parameter that can be, formally, replaced by
                             2
                            r  ψ/8.
                             Description of the combined diffusion and permeation gas transport is obtained
                           by applying Eq. (14.1) to diffusion and permeation constitutive Equations (14.3) and
                           (14.10) (for MTPM) or Equations (14.3) and (14.13) (for DGM). In both cases the
                           combined transport can be expressed in a vector form

                                                          dc
                                                        −   = FN                        (14.15)
                                                          dx
                                                                                            T
                           with the (n ∗ 1) vector of component molar concentrations, c =[c 1 , c 2 , ... , c n ] ,
                                                                                  T
                           (n ∗ 1) vector of combined molar flux densities, N =[N 1 , N 2 , ... , N n ] anda(n ∗ n)
                           matrix F ={f ij } with elements
                                          c i   c i α i
                                  f ij =−   m  +     i  = j;  i = 1, ... , n; j = 1, ... , n  (14.16)
                                        c T D   D k
                                            ij    i
                                                        n
                                               1    1      c j  c i α i
                                          f ii =  k  +      m  +  k   i = 1, ... , n    (14.17)
                                              D i  c T  j = 1  D ij  D i
                                                       j  = i

                           Parameter α i is different for MTPM and DGM. For MTPM it is defined as:
                                                          n
                                                  B i  1  6 c j (B j − B i )
                                              1 −   +            m
                                                 D k  c T      D ij
                                                  i
                                                         j = 1
                                                         j  = i
                                         α i =                        i = 1, ... , n    (14.18)
                                                       n
                                                      6 c j B j
                                                         D k
                                                      j=1  j
                           For DGM:
                                                       B/D i k
                                             α i =−               i = 1, ... , n        (14.19)
                                                         n
                                                         6     k
                                                   1 + B   c j /D j
                                                        j=1
   246   247   248   249   250   251   252   253   254   255   256