Page 223 - Geochemical Anomaly and Mineral Prospectivity Mapping in GIS
P. 223

Knowledge-Driven Modeling of Mineral Prospectivity                   225

           TABLE 7-VII

           Examples of fuzzy membership scores assigned to evidential classes in individual evidential maps
           portraying the recognition criteria for epithermal Au prospectivity, Aroroy district (Philippines).
           Table entries are the same  as in Table 7-VI except for  the values  in bold italics, which are
           revisions of initial fuzzy scores of zero. Ranges of values in bold include the threshold value of
           spatial data of optimum positive spatial associations with epithermal Au deposits in the study area.

                                                                      2
                      Proximity to NNW 1                   Proximity  to FI
             Range (km)   Mean (km)   Fuzzy score   Range (km)   Mean (km)   Fuzzy score
             0.00 – 0.08    0.05       0.80      0.00 – 0.39   0.20        0.80
             0.08 – 0.15    0.11       0.84      0.39 – 0.58   0.49        0.81
             0.15 – 0.23    0.19       0.89      0.58 – 0.80   0.69        0.83
             0.23 – 0.32    0.27       0.95      0.80 – 1.09   0.95        0.99
             0.32 – 0.41    0.36       1.00      1.09 – 1.40   1.25        0.82
             0.41 – 0.52    0.46       0.99      1.40 – 1.80   1.60        0.58
             0.52 – 0.71    0.61       0.59      1.80 – 2.32   2.06        0.33
             0.71 – 1.06    0.88       0.29      2.32 – 2.92   2.62        0.12
             1.06 – 1.73    1.39       0.01      2.92 – 3.62   3.27        0.01
             1.73 – 3.55    2.64       0.005     3.62 – 5.92   4.77        0.005
                                                                     4
                       Proximity to NW 3                    ANOMALY
             Range (km)   Mean (km)   Fuzzy score   Range      Mean     Fuzzy score
             0.00 – 0.18    0.10       0.80      0.00 – 0.06   0.03        0.01
             0.18 – 0.36    0.27       0.84      0.06 – 0.10   0.08        0.03
             0.36 – 0.54    0.45       0.89      0.10 – 0.16   0.13        0.06
             0.54 – 0.75    0.64       0.94      0.16 – 0.25   0.21        0.12
             0.75 – 1.01    0.88       1.00      0.25 – 0.29   0.27        0.88
             1.01 – 1.29    1.15       0.99      0.29 – 0.37   0.35        1.00
             1.29 – 1.65    1.47       0.93      0.37 – 0.49   0.43        0.96
             1.65 – 2.24    1.95       0.75      0.49 – 0.78   0.58        0.90
             2.24 – 3.02    2.63       0.03
             3.02 – 5.32    4.17       0.01
           1 NNW-trending faults/fractures. Function parameters:  α=0.35;  β=0.8;  γ=1.5.  Intersections of
                                                                      2
                                                                        3
           NNW- and NW-trending faults/fractures. Function parameters: α=1; β=1.9; γ =3.5.  NW-trending
                                                     4
           faults/fractures. Function parameters: α=0.9; β=2.3; γ=3.  Integrated PC2 and PC3 scores obtained
           from the catchment basin analysis of stream sediment geochemical data (see Chapter 3). Function
           parameters: α=0.14; β=0.26; γ=0.34.

           and 70%, respectively, of the case study area is considered prospective (Fig. 7-17B). The
           new results also show that the new predictive map obtained by using γ=0.5 is slightly
           better than the new the predictive map obtained by using γ=0 (Fig. 7-16B), indicating
           that supplementary but subtle pieces  of  spatial evidence  (i.e., those  with revised low
           fuzzy scores, especially in the fuzzy ANOMALY evidence (Table 7-VI) provide minor
           contributions to the improvement of the  prediction. Nevertheless,  both of the  fuzzy
           mineral prospectivity models shown in Figs. 7-16 and 7-17 are better than the mineral
           prospectivity models derived  via Boolean  logic modeling  (Fig.  7-5), binary index
           overlay modeling (Fig. 7-7) and multi-class index overlay modeling (Fig. 7-9). That is
   218   219   220   221   222   223   224   225   226   227   228