Page 174 - Geometric Modeling and Algebraic Geometry
P. 174

176    S. Chau et al.
                           u =0 and s =1 and also possesses a turning point with respect to v and another one
                           with respect to r (see Fig. 9.7).

                           9.7.2 Second example

                           The control points of the two biquadratic surfaces
                                        ⎡                                        ⎤
                                              ,  ,        ,   ,        ,   ,
                                           501 388 588  347 276 479  309 604 498
                                           775 775 775  775 775 775  775 775 775

                                        ⎢                                       ⎥
                                                          ,
                                                              ,
                                                                          ,
                                              ,
                                                 ,
                                           553 454 293  336 382 469  1,  426 137
                                        ⎣                                       ⎦
                                           775 775 775  775 775 775    775 775

                                              ,  ,         , 0,        ,   ,
                                           337 308 258   517  367   533 492 564
                                           775 775 775   775  775   775 775 775

                                                          x(u,v)
                                        ⎡                                       ⎤
                                              ,  ,        ,   ,         ,   ,
                                           492  67  522  543 322 117  346  13  4
                                           775 155 775  775 775 775  775 155 5

                                        ⎢                           307 514 564 ⎥
                                                          ,
                                                              ,
                                              ,
                                           113 392 ,  58  632 469 413  ,   ,
                                        ⎣                                       ⎦
                                           155 775 155  775 775 775  775 775 775

                                              ,  ,        ,   ,        ,   ,
                                           602 129 274  669 692  53  488 219 412
                                           775 775 775  775 775 155  775 775 775

                                                           y(r,s)
                           were generated by using a pseudo–random number generator.
                              The resultant–based technique leads to several phantom components (see Fig.
                           9.8, center), which can be cut off as described previously (see Fig. 9.8, left).
                              The combined use of subdivision and approximate implicitization produces even
                           more phantom components (see Fig. 9.8, right). This is due to the fact that the subdi-
                           vision generates more implicitly defined surfaces. Eventually we obtain sufficiently
                           many points to draw the correct intersection curves.
                              We also computed the self–intersection curve (see Fig. 9.9) with the help of the
                           method described in Section 9.6.1.
                              When using the parameter–line based approach, this example does not lead to
                           any difficulties. The intersection curve consists of three segments (see Fig. 9.10). The
                           first B´ ezier surface patch x(u, v) has one self–intersection curve, while the second
                           one y(r, s) intersects itself three times and has two cuspidal points.
                           9.7.3 Third example
                           The two biquadratic surface patches with the control points
                             ⎡                            ⎤      ⎡                          ⎤
                                0, ,     3 ,  1  ,  1  1, 0,  4     0, ,    3 ,  1  ,  1  1, 0,  1
                                  1 4
                                                                      1 1
                                  7 5    5 13 3        5              7 5   5 10 3       5

                                          ,
                                                                     , ,
                             ⎢                          16 ⎥     ⎢                   6 3 1 ⎥
                                 , ,
                                                                             , ,
                                             ,
                                1 4 11   1 34 3   6 3               1 4 7   1 1 3     , ,
                             ⎣                     , , −   ⎦ and ⎣                         ⎦
                                8 9 40   3 65 4   7 8   35          8 9 8   3 2 4    7 8 7

                                 , ,     ,   ,      , 1,             , ,     , ,      , 1,
                                1 6 4   3 443 3    7   14           1 6 1   3 7 3    7   1
                                5 7 5   4 520 8    8   15           5 7 5   4 8 8    8   3

                                          x(u,v)                             y(r,s)
                           touch each other along a parameter line.
                              The resultant-based approach leads to an implicitly defined curve which de-
                           scribes the intersection. Due to the special situation, it contains the square of this
   169   170   171   172   173   174   175   176   177   178   179