Page 464 - Global Tectonics
P. 464
446 REFERENCES
Koons, P. et al. (2003) Influence of exhumation on the struc- Larson, K.M. et al. (1999) Kinematics of the India–Eurasia collision
tural evolution of transpressional plate boundaries: an zone from GPS measurements. J. geophys. Res. 104, 1077–93.
example from the Southern Alps, New Zealand. Geology 31, Larson, R.L. (1991a) Latest pulse of Earth: evidence for a mid-
3–6. Cretaceous superplume. Geology 19, 547–50.
Koons, P.O. et al. (1998) Fluid flow during active oblique Larson, R.L. (1991b) Geological consequences of superplumes.
convergence: a Southern Alps model from mechanical and Geology 19, 963–6.
geochemical observations. Geology 26, 159–62. Larson, R.L. (1995) The mid-Cretaceous superplume episode. Sci.
Korenaga, J. (2006) Archean geodynamics and the thermal evolu- Am. 272, 66–70.
tion of the Earth. In Benn, K., Mareschal, J.C., & Condie, K. Larson, R.L. & Pitman, W.C. III (1972) World-wide correlation of
C. (eds) Archean Geodynamics and Environments. Geophys. Mesozoic magnetic anomalies, and its implications. Bull. geol.
Monogr. Ser. 164, pp. 7–32. American Geophysical Union, Soc. Am. 83, 3645–61.
Washington, DC. Larson, R.L. et al. (1992) Roller-bearing tectonic evolution of the
Kreemer, C. et al. (2000) Active deformation in eastern Indonesia Juan Fernandez microplate. Nature 356, 571–6.
and the Philippines from GPS and seismicity data. J. geophys. Latin, D., Norry, M.J. & Tarzey, R.J.E. (1993) Magmatism in the
Res. 105, 663–80. Gregory Rift, East Africa: evidence for melt generation by a
Kröner, A. (1981) Precambrian plate tectonics. In Kröner, A. (ed.) plume. J. Petrol. 34, 1007–27.
Precambrian Plate Tectonics, pp. 57–90. Elsevier, Amsterdam. Lavier, L.L. & Buck, W.R. (2002) Half graben versus large-offset
Kröner, A. (1985) Ophiolites and the evolution of tectonic bound- low-angle normal fault: importance of keeping cool during
aries in the late Proterozoic Arabian–Nubian Shield of north- normal faulting. J. geophys. Res. 107, 2122, doi:10.1029/
east Africa and Arabia. Precambrian Res. 27, 277–300. 2001JB000513.
Kröner, A. & Cordani, U. (2003) African, southern Indian and Lavier, L.L. & Manatschal, G. (2006) A mechanism to thin the
South American cratons were not part of the Rodinia super- continental lithosphere at magma-poor margins. Nature 440,
continent: evidence from field relationships and geochronol- 324–8.
ogy. Tectonophysics 375, 325–52. Lavier, L.L., Buck, W.R. & Poliakov, A.N.B. (1999) Self-consistent
Kurtén, B. (1969) Continental drift and evolution. Sci. Am. 220, rolling hinge model for the evolution of large-offset low-angle
54–65. normal faults. Geology 27, 1127–30.
Kusky, T.M. & Polat, A. (1999) Growth of granite–greenstone Lavier, L.L., Buck, W.R. & Poliakov, A.N.B. (2000) Factors con-
terranes at convergent margins, and stabilization of Archean trolling normal fault offset in an ideal brittle layer. J. geophys.
cratons. Tectonophysics 305, 43–73. Res. 105, 23 431–42.
Kusky, T.M. & Vearncombe, J.R. (1997) Structural Aspects. In de Lawver, L.A. & Müller, R.D. (1994) Iceland hotspot track. Geology
Wit, M.J. & Ashwal, L.D. (eds) Greenstone Belts, pp. 91–124. 22, 311–4.
Clarendon Press, Oxford, UK. Lawver, L.A. et al. (2003) The PLATES 2003 Atlas of Plate Recon-
Kusznir, N.J. & Bott, M.H.P. (1976) A thermal study of the forma- struction (750 Ma to Present Day). PLATES Progress Report
tion of oceanic crust. Geophys. J. Roy. astr. Soc. 47, 83–95. No. 280–0703. University of Texas Institute for Geophysics Techni-
Kusznir, N.J. & Park, R.G. (1987) The extensional strength of the cal Report No. 190. University of Texas Press, Houston, Texas.
continental lithosphere: its dependence on geothermal gradi- Lazar, M., Ben-Avraham, Z. & Schattner, U. (2006) Formation of
ent, and composition and thickness. In Coward, M.P., Dewey, sequential basins along a strike-slip fault – geophysical obser-
J.F. & Hancock, P.L. (eds) Continental Extensional Tectonics. vations from the Dead Sea basin. Tectonophysics 421, 53–69.
Spec. Pub. geol. Soc. Lond. 28, 35–52. Le Cheminant, A.N. & Heaman, L.M. (1989) Mackenzie igneous
Kusznir, N.J., Hunsdale, R. & Roberts, A.M. (2004) Timing of event, Canada; Middle Proterozoic hotspot magmatism asso-
depth-dependent lithosphere stretching on the S. Lofoten ciated with ocean opening. Earth planet. Sci. Lett. 96, 38–48.
rifted margin offshore mid-Norway: pre-breakup or post- Lee, C.-T.A. (2006) Geochemical/petrologic constraints on the
breakup? Basin Research 16, 279–96. origin of cratonic mantle. In Benn, K., Mareschal, J.C., &
Lachenbruch, A.H. & Sass, J.H. (1992) Heat flow from Cajon Pass, Condie, K.C. (eds) Archean Geodynamics and Evironments.
fault strength, and tectonic implications. J. geophys. Res. 97, Geophys. Monogr. Ser. 164, pp. 89–114. American Geophysical
4995–5015. Union, Washington, DC.
Lacroix, S. & Sawyer, E.W. (1995) An Archean fold-thrust belt in Le Fort, P. et al. (1987) Crustal generation of Himalayan leuco-
the northwestern Abitibi greenstone belt: structural and granites. Tectonophysics 134, 39–57.
seismic evidence. Can. J. Earth Sci. 32, 97–112. LeGrand, H.E. (1988) Drifting Continents and Shifting Theories.
Lamb, A. & Davis, P. (2003) Cenozoic climate change as a possible Cambridge University Press, Cambridge, UK.
cause for the rise of the Andes. Nature 425, 792–7. Leitner, B. et al. (2001) A focused look at the Alpine fault, New
Lamb, S. et al. (1997) Cenozoic evolution of the central Andes in Zealand: seismicity, focal mechanisms, and stress observa-
Bolivia and northern Chile. In Burg, J.-P. & Ford, M. (eds) tions, J. geophys. Res. 106, 2193–220.
Orogeny through Time. Spec. Pub.geol. Soc. Lond. 121, 237–64. Lemieux, S., Ross, G.M. & Cook, F.A. (2000) Crustal geometry
Langmuir, C.H., Bender, J.B. & Batiza, R. (1986) Petrological and and tectonic evolution of the Archean crystalline basement
tectonic segmentation of the East Pacifi c Rise, 5°30′–14°30′N. beneath the southern Alberta Plains, from new seismic refl ec-
Nature 322, 422–9. tion and potential fi eld studies. Can. J. Earth Sci. 37, 1473–91.

