Page 469 - Global Tectonics
P. 469
REFERENCES 451
Nicolas, A., Boudier, F. & Ildefonse, B. (1994) Evidence from the dance. Geochem. Geophys. Geosyst. 5, Q12012, doi:10.1029/
Oman ophiolite for active mantle upwelling beneath a 2004GC000793.
fast-spreading ridge. Nature 370, 51–3. Oldow, J.S. (2003) Active transtensional boundary zone between
Niell, A.E. et al. (1979) Comparison of a radiointerferometric the western Great Basin and Sierra Nevada block, western US
differential baseline measurement with conventional geodesy. Cordillera. Geology 31, 1033–6.
Tectonophysics 52, 49–58. Oliver, J. (1982) Tracing surface features to great depths: a power-
Nielsen T.K. & Hopper, J.R. (2002) Formation of volcanic rifted ful means for exploring the deep crust. Tectonophysics 81,
margins: are temperature anomalies required? Geophys. Res. 257–72.
Lett. 29, 2022, doi:10.1029/2002GL015681. Oliver, J. & Isacks, B. (1967) Deep earthquake zones, anomalous
Nielsen T.K. & Hopper, J.R. (2004) From rift to drift: mantle structures in the upper mantle, and the lithosphere. J. geophys.
melting during continental breakup. Geochem. Geophys. Geosyst. Res. 72, 4259–75.
5, Q07003, doi:10.1029/2003GC000662. Opdyke, N.D. & Channel, J.E.T. (1996) Magnetic Stratigraphy. Aca-
Niemi, N.A. et al. (2004) BARGEN continuous GPS data across the demic Press, San Diego.
eastern Basin and Range province, and implications for fault Opdyke, N.D., Burckle, L.H. & Todd, A. (1974) The extension of
system dynamics. Geophys. J. Int. 159, 842–62. the magnetic time scale in sediments of the central Pacifi c
Nisbet, E.G. & Fowler, C.M.R. (1978) The Mid-Atlantic Ridge at Ocean. Earth planet. Sci. Lett. 22, 300–6.
37 and 45°N: some geophysical and petrological constraints. Opdyke, N.D. et al. (1966) Palaeomagnetic study of Antarctic deep
Geophys. J. Roy. astr. Soc. 54, 631–60. sea cores. Science 154, 349–57.
Nisbet, E.G. et al. (1993) Constraining the potential temperature Oreskes, N. (1999) The Rejection of Continental Drift: theory and
of the Archean mantle: a review of the evidence from komati- method in American earth science. Oxford University Press, New
ites. Lithos 30, 291–307. York.
Norabuena, E.O. et al. (1998) Space geodetic observations of Oreskes, N. (2001) (ed.) Plate Tectonics: an insider’s history of the
Nazca–South America convergence across the central Andes. modern theory of the Earth. Westview press, Boulder, CO.
Science 279, 358–62. Orowan, E. (1965) Convection in a non-Newtonian mantle, con-
Norabuena, E.O. et al. (1999) Decelerating Nazca–South America tinental drift, and mountain building. Phil. Trans. Roy. Soc.
and Nazca–Pacific plate motions. Geophys. Res. Lett. 26, 3405– Lond. A 258, 284–313.
8. Owens, T.J. & Zandt, G. (1997) Implications of crustal property
Norris, R.J. & Cooper, A.F. (2001) Late Quaternary slip rates and variations for models of Tibetan plateau evolution. Nature 387,
slip partitioning on the Alpine Fault, New Zealand. J. struct. 37–43.
Geol. 23, 507–20. Ozacar, A.A. & Zandt, G. (2004) Crustal seismic anisotropy in
Norris, R.J., Koons, P.O. & Cooper, A.F. (1990) The obliquely- central Tibet: implications for deformational style and fl ow in
convergent plate boundary in the South Island of New the crust. Geophys. Res. Lett. 31, L23601, doi:10.1029/
Zealand: implications for ancient collisional zones. J. struct. 2004GL021096.
Geol. 12, 715–25. Özalaybey, S. & Savage, M.K. (1995) Shear-wave splitting beneath
Norton, I.O. (1995) Plate motion in the North Pacific: the 43 Ma western United States in relation to plate tectonics. J. geophys.
nonevent. Tectonics 14, 1080–94. Res. 100, 18 135–49.
Norton, I.O. & Sclater, J.G. (1979) A model for the evolution of Packham, G.H. & Falvey, D.A. (1971) An hypothesis for the for-
the Indian Ocean and the break up of Gondwanaland. J. mation of marginal seas in the Western Pacifi c. Tectonophysics
geophys. Res. 84, 6803–30. 11, 79–110.
Nunns, A.G. (1983) Plate tectonic evolution of the Greenland– Pakiser, L.C. (1963) Structure of the crust and upper mantle in the
Scotland Ridge and surrounding areas. In Bott, M.H.P. et al. western United States. J. geophys. Res. 68, 5747–56.
(eds) Structure and Development of the Greenland–Scotland Ridge. Pancha, A., Anderson, J.G. & Kreemer, C. (2006) Comparison of
NATO Conference Series IV, 8, pp. 11–30. Plenum Press, seismic and geodetic scalar moment rates across the Basin and
London. Range Province. Bull. seis. Soc. Am. 96, 11–32.
Nyblade, A.A. & Robinson, S.W. (1994) The African superswell. Panien, M., Schreurs, G. & Pfiffner, A. (2005) Sandbox experi-
Geophys. Res. Lett. 21, 765–68. ments on basin inversion: testing the influence of basin orien-
O’Brien, P.J. & Rötzler, J. (2003) High pressure granulites: forma- tation and basin fi ll. J. struct. Geol. 27, 433–45.
tion, recovery of peak conditions and implications for tecton- Panning, M. & Romanowicz, B. (2004) Inferences on flow at the
ics. J. metam. geol. 21, 3–20. base of Earth’s mantle based on seismic anisotropy. Science
O’Connell, RJ. & Budiansky, B. (1977) Viscoelastic properties 303, 351–3.
of fluid-saturated cracked solids. J. geophys. Res. 82, 5719– Pardo-Casas, F. & Molnar, P. (1987) Relative motion of the Nazca
35. (Farallon) and South American plates since Late Cretaceous
O’Reilly, S.Y. et al. (2001) Are lithospheres forever? Tracking time. Tectonics 6, 233–48.
changes in subcontinental lithospheric mantle through time. Park, J. & Levin, V. (2002) Seismic anisotropy: tracing plate
GSA Today 11, 4–10. dynamics in the mantle. Science 296, 485–9.
Okino, K. et al. (2004) Development of oceanic detachment and Park, R.G. (1983) Foundations of Structural Geology. Blackie, London
asymmetric spreading at the Australian–Antarctic Discor- & Glasgow.

