Page 470 - Global Tectonics
P. 470
452 REFERENCES
Park, Y. & Nyblade, A.A. (2006) P-wave tomography reveals a L.D. (eds) Greenstone Belts, pp. 398–420. Clarendon Press,
westward dipping low velocity zone beneath the Kenya Rift. Oxford.
Geophys. Res. Lett. 33, L07311, doi:10.1029/2005GL025605. Perez-Gussinge, M. & Watts, A.B. (2005) The long-term strength
Park, S.K. & Wernicke, B. (2003) Electrical conductivity images of of Europe and its implications for plate forming processes.
Quaternary faults and Tertiary detachments in the California Nature 436, 381–4.
Basin and Range. Tectonics 22, 1030, doi:10.1029/ Petford, N. & Atherton, M.P. (1996) Na-rich partial melts from
2001TC001324. newly underplated basaltic crust: the Cordillera Blanca batho-
Parman, S.W., Grove, T.L. & Dann, J.C. (2004) A subduction lith, Peru. J. Petrol. 37, 1491–521.
origin for komatiites and cratonic lithospheric mantle. S. Afr. Petford, N. et al. (2000) Granite magma formation, transport and
J. Geol. 107, 107–18. emplacement in the Earth’s crust. Nature 408, 669–73.
Parsons, B. & McKenzie, D.P. (1978) Mantle convection and the Petit, C. & Ebinger, C. (2000) Flexure and mechanical behavior of
thermal structure of the plates. J. geophys. Res. 83, 4485–96. cratonic lithosphere: gravity models of the East African and
Parsons, B. & Sclater, J.G. (1977) An analysis of the variation of Baikal rifts. J. geophys. Res. 105, 19,151–62.
ocean floor bathymetry and heat flow with age. J. geophys. Res. Petronotis, K.E. & Gordon, R.G. (1999) A Maastrichtian paleo-
82, 803–27. magnetic pole for the Pacific plate from a skewness analysis of
Parsons, T. et al. (1996) Crustal structure of the Colorado Plateau, marine magnetic anomaly 32. Geophys. J. Int. 139, 227–47.
Arizona: application of new long-offset seismic data analysis Pickup, S.L.B. et al. (1996) Insight into the nature of the ocean–
techniques. J. geophys. Res. 101, 11,173–94. continent transition off West Iberia from a deep multichannel
Patzwahl, R. et al. (1999) Two-dimensional velocity models of the seismic refl ection profi le. Geology 24, 1079–82.
Nazca plate subduction zone between 19.5°S and 25°S from Pilger, R.H. Jr (1982) The origin of hotspot traces: evidence from
wide angle seismic measurements during the CINCA95 eastern Australia. J. geophys. Res. 87, 1825–34.
project. J. geophys. Res. 104, 7293–317. Piper, J.D.A. (1987) Palaeomagnetism and the Continental Crust.
Peacock, S.M. (1991) Numerical simulation of subduction zone Open University Press, Milton Keynes, UK.
pressure–temperature–time paths: constraints on fl uid pro- Pirajno, F. (2004) Hotspots and mantle plumes: global intraplate
duction and arc magmatism. Philos. Trans. R. Soc. London Ser. tectonics, magmatism and ore deposits. Mineral. Petrol. 82,
A 335, 341–53. 183–216.
Peacock, S.M. (1992) Blueschist-facies metamorphism, shear Pitman, W.C. III & Heirtzler, J.R. (1966) Magnetic anomalies over
heating, and P–T–t paths in subduction shear zones. J. geophys. the Pacifi c–Antarctic ridge. Science 154, 1164–71.
Res. 97, 17 693–707. Pitman, W.C. III & Talwani, M. (1972) Sea-floor spreading in the
Peacock, S.M. (2001) Are the lower planes of double seismic zones North Atlantic. Bull. geol. Soc. Am. 83, 619–46.
caused by serpentine dehydration in subducting oceanic Plank, T. & Langmuir, C.H. (1993) Tracing trace elements from
mantle? Geology 29, 299–302. sediment input to volcanic output at subduction zones. Nature
Peacock, S.M. (2003) Thermal structure and metamorphic evolu- 362, 739–43.
tion of subducting slabs. In Eiler, J. (ed.) Inside the Subduction Planke, S. et al. (2000) Seismic volcanostratigraphy of large-volume
Factory. Geophys. Monogr. Ser. 138, pp. 7–22. American basaltic extrusive complexes on rifted margins. J. geophys. Res.
Geophysical Union, Washington, DC. 105, 19 335–51.
Peacock, S.M. & Wang, K. (1999) Seismic consequences of Platt, J.P. (1986) Dynamics of orogenic wedges and the uplift of
warm versus cool subduction zone metamorphism: exam- high-pressure metamorphic rocks. Bull. geol. Soc. Am. 97, 1037–
ples from northeast and southwest Japan. Science 286, 53.
937–9. Plumstead, E.P. (1973) The enigmatic Glossopteris flora and uni-
Pearce, J.A. (1980) Geochemical evidence for the genesis and erup- formitarianism. In Tarling, D.H. & Runcorn, S.K. (eds) Impli-
tive setting of lavas from Tethyan ophiolites. In Panayiotou, cations of Continental Drift to the Earth Sciences, I, pp. 413–24.
A. (ed.) Ophiolites, pp. 261–72. Geol. Surv., Cyprus. Academic Press, London.
Pearce, J.A. & Peate, D.W. (1995) Tectonic implications of the Polet, J. et al. (2000) Shear wave anisotropy beneath the Andes
composition of volcanic arc magmas. Annu. Rev. Earth Planet. from the BANJO, SEDA, and PISCO experiments. J. geophys.
Sci. 23, 251–85. Res. 105, 6287–304.
Pearson, D.G. et al. (2002) The development of lithosperic keels Pollack, H.N. & Chapman, D.S. (1977) The flow of heat from the
beneath the earliest continents: time constraints using PGE Earth’s interior. Sci. Am. 237, 60–76.
and Re–Os isotope systematics. In Fowler, C.M.R., Ebinger, Pollack, H.N., Hunter, S.J. & Johnson, J.R. (1993) Heat fl ow from
C.J. & Hawkesworth, C.J. (eds) The Early Earth: physical, chem- the Earth’s interior: analysis of the global data set. Rev. Geophys.
ical and biological development. Spec. Pub. geol. Soc. Lond. 199, 31, 267–80.
65–90. Poulsen, C.J. et al. (2001) Response of the mid-Cretaceous global
Peltier, W.R. & Andrews, J.T. (1976) Glacial–isostatic adjustment ocean circulation to tectonic and CO 2 forcings. Paleoceanogra-
– I. The forward problem. Geophys. J. Roy. astr. Soc. 46, 605– phy, 16, 576–92.
46. Powell, C. McA. et al. (1993) Paleomagnetic constraints on timing
Percival, J.A. et al. (1997) Tectonic evolution of associated green- of the Neoproterozoic breakup of Rodinia and the Cambrian
stone belts and high-grade terrains. In de Wit, M.J. & Ashwal, formation of Gondwana. Geology 21, 889–92.

