Page 473 - Global Tectonics
P. 473
REFERENCES 455
Schnitker, D. (1980) North Atlantic oceanography as a possible Searle, R.C. (1983) Multiple, closely spaced transform faults in
cause of Antarctic glaciation and eutrophication. Nature 284, fast-slipping fracture zones. Geology 11, 607–10.
615–16. Searle, R.C. et al. (1989) Comprehensive sonar imagery of the
Scholz, C.H. (1998) Earthquakes and friction laws. Nature 391, Easter microplate. Nature 341,701–5.
37–42. Sella, G.F., Dixon, T.H. & Mao, A. (2002) REVEL: a model for
Scholz, C.H. (2000) Evidence for a strong San Andreas fault. Recent plate velocities from space geodesy. J. geophys. Res. 107,
Geology 28, 163–6. 2081, doi:10.1029/2000JB000033.
Schoonmaker, J. (1986) Clay mineralogy and diagenesis of sedi- Sempéré, J.-C., Purdy, G.M. & Schouten, H. (1990) Segmentation
ments from deformation zones in the Barbados accretionary of the Mid-Atlantic Ridge between 24°N and 30°40′N. Nature
prism. In Moore, J.C. (ed.) Synthesis of Structural Fabrics in Deep 344, 427–9.
Sea Drilling Project Cores from Forearcs. Geol. Soc. Am. Mem. 166, Sengör A.M.C. & Natal’in B.A. (1996) Turkic-type orogeny and its
S
105–16. role in the making of the continental crust. Ann. Rev. Earth
Schroeder, T. & John, B.E. (2004) Strain localization on an oceanic planet. Sci. 24, 263–337.
detachment fault system, Atlantis Massif, 30°N, Mid-Atlantic Shackleton, N.J. & Kennett, J.P. (1975) Paleotemperature history
Ridge. Geochem. Geophys. Geosyst. 5, Q11007, doi:10.1029/ of the Cenozoic and the initiation of Antarctic glaciation:
2004GC000728. oxygen and carbon isotope analyses in DSDP Sites 277, 270
Schubert, G., Turcotte, D.L. & Olsen P. (2001) Mantle Convection and 281. In Kennett, J.P. & Houtz, R.E. (eds) Initial Reports of
in the Earth and Planets, pp. 940. Cambridge University Press, the Deep Sea Drilling Project 29, pp. 743–56. US Government
Cambridge. Printing Office, Washington, DC.
Schulte-Pelkum, V. et al. (2005) Imaging the Indian subcontinent Shackleton, R.M., Dewey, J.F. & Windley, B.F. (1988) Tectonic
beneath the Himalaya. Nature. 435, doi:10.1038/nature03678. Evolution of the Himalayas and Tibet. Royal Society, London.
Schulze, D.J. (1989) Constraints on the abundance of eclogite in Shamir, G., Eyal, Y. & Bruner I. (2005) Localized versus distrib-
the upper mantle. J. geophys. Res 94, 4205–12. uted shear in transform plate boundary zones: the case of the
Schurr, B. et al. (2003) Complex patterns of fluid and melt trans- Dead Sea Transform in the Jericho Valley. Geochem. Geophys.
port in the central Andean subduction zone revealed by atten- Geosyst. 6, Q05004, doi:10.1029/2004GC000751.
uation tomography. Earth planet. Sci. Lett. 215, 105–19. Shearer, P.-M. & Masters, G.M. (1992) Global mapping of topog-
Sclater, J.G. & Francheteau, J. (1970) The implications of terres- raphy on the 660-km discontinuity. Nature 355, 791–6.
trial heat flow observations on current tectonic and geochem- Shen, Z.-K. et al. (2000) Contemporary crustal deformation in east
ical models of the crust and upper mantle of the Earth. Asia constrained by Global Positioning System measurements.
Geophys. J. Roy. astr. Soc. 20, 509–42. J. geophys. Res. 105, 5721–34.
Sclater, J.G., Jaupart, C. & Galson, D. (1980) The heat fl ow Shen-Tu, B., Holt, W.E. & Haines, A.J. (1998) Contemporary
through oceanic and continental crust and the heat loss of the kinematics of the Western United States determined from
Earth. Rep. Geophys. Space Phys. 18, 269–311. earthquake moment tensors, very long baseline interferome-
Scotese, C.R., Gahagan, L.M. & Larson, R.L. (1988) Plate tectonic try, and GPS observations. J. geophys. Res. 103, 18,087–117.
reconstructions of the Cretaceous and Cenozoic ocean basins. Siame, L.L. et al. (2005) Deformation partitioning in fl at subduc-
Tectonophysics 155, 27–48. tion setting: case of the Andean foreland of western Argentina
Scott, D.J., Helmstaedt, H. & Bickle, M.J. (1992) Purtuniq ophio- (28°S–33°S). Tectonics 24, TC5003, doi:10.1029/2005
lite, Cape Smith belt, northern Quebec, Canada: a recon- TC001787.
structed section of early Proterozoic oceanic crust. Geology 20, Sibson, R.H. (1990) Conditions for fault-valve behaviour. In Knipe,
173–6. R.J. & Rutter, E.H. (eds) Deformation Mechanisms, Rheology and
Scott, M.R. et al. (1973) Hydrothermal manganese in the median Tectonics. Spec. Pub. geol. Soc. Lond. 54, 15–28.
valley of the Mid-Atlantic Ridge. EOS Trans. Amer. Geophys. Un. Sillitoe, R.H. (1972a) Formation of certain massive sulphur depos-
54, 244. its at sites of sea-fl oor spreading. Trans. Inst. Min. Metall. 81,
Scrutton, C.T. (1967) Absolute time data from palaeontology. In B141–8.
Runcorn, S.K. et al. (eds) International Dictionary of Geophysics Sillitoe, R.H. (1972b) A plate tectonic model for the origin of
I, p. 1. Pergamon Press, Oxford. porphyry copper deposits. Econ. Geol. 67, 184–97.
Scrutton, R.A. (1979) On sheared passive continental margins. Silver, E.A. (2000) Leg 170: synthesis of fl uid–structural relation-
Tectonophysics 59, 293–305. ships of the Pacific margin of Costa Rica. In Silver, E.A.,
Searle, D.L. & Panayiotou, A. (1980) Structural implications in the Kimura, G. & Shipley, T.H. (eds) Proceedings of the Ocean Drill-
evolution of the Troodos massif, Cyprus. In Panayiotou, A. ing Program, Scientific Results, 170, pp. 1–11. College Station,
(ed.) Ophiolites, pp. 50–60. Geol. Surv. Cyprus. TX.
Searle, M.P. (1999) Extensional and compressional faults in the Silver, E.A. et al. (1983) Back-arc thrusting in the eastern Sunda
Everest–Lhotse massif, Khumbu Himalaya, Nepal. J. geol. Soc. arc, Indonesia; a consequence of arc–continental collision.
Lond. 156, 227–40. J. geophys. Res. 88, 7429–48.
Searle, M.P. et al. (1999) Age of crustal melting, emplacement and Singh, S.C. et al. (1998) Melt to mush variations in crustal magma
exhumation history of the Shivling leucogranite, Garhwal properties along the ridge crest at the southern East Pacifi c
Himalaya. Geol. Mag. 136, 513–25. Rise. Nature 394, 874–8.

