Page 409 - Handbook Of Integral Equations
P. 409

b
               38.   y(x)+    f(t)y(x – t)y(t) dt = Ae λx .
                            a
                     1 . Solutions:
                      ◦
                                                                     λx
                                                     λx
                                            y 1 (x)= k 1 e ,  y 2 (x)= k 2 e ,
                     where k 1 and k 2 are the roots of the quadratic equation
                                                                  b
                                             2
                                           Ik + k – A =0,   I =   f(t) dt.
                                                                a
                                            βx
                     2 . The substitution y(x)= e w(x) leads to an equation of the same form,
                      ◦
                                                b

                                        w(x)+    f(t)w(t)w(x – t) dt = Ae (λ–β)x .
                                               a
                               b
               39.   y(x)+    f(t)y(t)y(x – t) dt = A sinh λx.
                            a
                     A solution:
                                              y(x)= p sinh λx + q cosh λx.                  (1)
                     Here p and q are roots of the algebraic system
                                                                          2
                                                    2
                                                 2
                                                                    2
                                    p + I 0 pq + I cs (p – q )= A,  q + I cc q – I ss p = 0,  (2)
                     where
                                          b               b

                                    I 0 =  f(t) dt,  I cs =  f(t) cosh(λt) sinh(λt) dt,
                                         a               a
                                          b                      b

                                                  2                      2
                                   I cc =  f(t) cosh (λt) dt,  I ss =  f(t) sinh (λt) dt.
                                         a                      a
                     Different solutions of system (2) generate different solutions (1) of the integral equation.
                             b

               40.   y(x)+    f(t)y(t)y(x – t) dt = A cosh λx.
                            a
                     A solution:
                                              y(x)= p sinh λx + q cosh λx.                  (1)
                     Here p and q are roots of the algebraic system
                                                 2
                                                                          2
                                                                    2
                                                    2
                                    p + I 0 pq + I cs (p – q )=0,  q + I cc q – I ss p = A,  (2)
                     where we use the notation introduced in 6.2.39. Different solutions of system (2) generate
                     different solutions (1) of the integral equation.
                               b
               41.   y(x)+    f(t)y(t)y(x – t) dt = A sin λx.
                            a
                     A solution:
                                               y(x)= p sin λx + q cos λx.                   (1)
                     Here p and q are roots of the algebraic system
                                                                     2
                                                    2
                                                 2
                                                                          2
                                    p + I 0 pq + I cs (p + q )= A,  q + I cc q – I ss p = 0,  (2)
                     where
                                           b               b

                                     I 0 =  f(t) dt,  I cs =  f(t) cos(λt) sin(λt) dt,
                                          a               a
                                           b                     b

                                                  2
                                                                        2
                                    I cc =  f(t) cos (λt) dt,  I ss =  f(t) sin (λt) dt.
                                          a                     a
                     Different solutions of system (2) generate different solutions (1) of the integral equation.
                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 389
   404   405   406   407   408   409   410   411   412   413   414