Page 410 - Handbook Of Integral Equations
P. 410

b
               42.   y(x)+    f(t)y(t)y(x – t) dt = A cos λx.
                            a
                     A solution:
                                               y(x)= p sin λx + q cos λx.                   (1)

                     Here p and q are roots of the algebraic system
                                                    2
                                                 2
                                                                          2
                                                                    2
                                    p + I 0 pq + I cs (p + q )=0,  q + I cc q – I ss p = A,  (2)
                     where we use the notation introduced in 6.2.41. Different solutions of system (2) generate
                     different solutions (1) of the integral equation.

               6.3. Equations With Power-Law Nonlinearity

                                            b

                 6.3-1. Equations of the Form  G(···) dt = F (x)
                                            a
                         b
                                β
                         λ µ
               1.       t y (x)y (t) dt = f(x).
                      a
                     A solution:                                             1
                                                 1            b       β    –  µ+β
                                                µ              λ       µ
                                   y(x)= A f(x)   ,   A =      t f(t)  dt      .
                                                             a
                       b

                         λt µ    β
               2.       e y (x)y (t) dt = f(x).
                      a
                     A solution:                                             1
                                                 1            b       β     –  µ+β
                                                µ              λt       µ
                                   y(x)= A f(x)  ,    A =     e   f(t)  dt      .
                                                            a
                       ∞                    s

                                    k
                                b
                            a
                                                     c



               3.        f(x t)t y x t y(t) dt = Ax .
                      0
                     A solution:
                                                    1
                                                A   s+1  λ       a + c + ab

                                         y(x)=        x ,    λ =         ,
                                                 I               k – a – as
                                            ∞               a + c + as + bk + cs

                                                  β
                                       I =    f(t)t dt,  β =                .
                                                                k – a – as
                                           0
                                                  b
                                                           β
                 6.3-2. Equations of the Form y(x)+  K(x, t)y (t) dt = F (x)
                                                  a
                                b
                                 λ β
               4.    y(x)+ A    t y (t) dt = g(x).
                              a
                                                                  λ β
                     This is a special case of equation 6.8.27 with f(t, y)= At y .
                              b

                                 µt β
               5.    y(x)+ A    e y (t) dt = g(x).
                              a
                                                                   µt β
                     This is a special case of equation 6.8.27 with f(t, y)= Ae y .
                 © 1998 by CRC Press LLC




                © 1998 by CRC Press LLC
                                                                                                             Page 390
   405   406   407   408   409   410   411   412   413   414   415