Page 411 - Handbook Of Integral Equations
P. 411

b
                                     y (t) dt = g(x).
               6.    y(x)+ A    e λ(x–t) β
                              a
                                                                   β
                     This is a special case of equation 6.8.28 with f(t, y)= Ay .
                             b

                                   β
               7.    y(x) –   g(x)y (t) dt =0.
                            a
                     A solution:
                                                                        1
                                                              b        1–β

                                                                β
                                         y(x)= λg(x),   λ =    g (t) dt   .
                                                             a
                     For β > 0, the equation also has the trivial solution y(x) ≡ 0.
                             b

                                   β
               8.    y(x) –   g(x)y (t) dt = h(x).
                            a
                                                                  β
                     This is a special case of equation 6.8.29 with f(t, y)= –y .
                                b
                                             β
               9.    y(x)+ A    cosh(λx + µt)y (t) dt = h(x).
                              a
                                                                   β
                     This is a special case of equation 6.8.31 with f(t, y)= Ay .
                              b

                                             β
               10.   y(x)+ A    sinh(λx + µt)y (t) dt = h(x).
                              a
                                                                   β
                     This is a special case of equation 6.8.32 with f(t, y)= Ay .
                              b

                                            β
               11.   y(x)+ A    cos(λx + µt)y (t) dt = h(x).
                              a
                                                                   β
                     This is a special case of equation 6.8.33 with f(t, y)= Ay .
                                b
                                            β
               12.   y(x)+ A    sin(λx + µt)y (t) dt = h(x).
                              a
                                                                   β
                     This is a special case of equation 6.8.34 with f(t, y)= Ay .
                             ∞    t

                                                   2
               13.   y(x)+     f       y(t) dt = Ax .
                            0     x
                                      2 2
                     Solutions: y k (x)= β x , where β k (k = 1, 2) are the roots of the quadratic equations
                                      k
                                                                ∞

                                          2
                                         β ± Iβ – A =0,    I =    zf(z) dz.
                                                                0
                             ∞      t        β

                                λ
               14.   y(x) –    t f      y(t)  dt =0,    β ≠ 1.
                            0       x
                     A solution:
                                               1+λ              ∞  λ+β
                                       y(x)= Ax  1–β  ,  A 1–β  =  z  1–β  f(z) dz.
                                                              0
                             ∞                  β

                                λt

               15.   y(x) –    e f(ax + bt) y(t)    dt =0,  b ≠ 0, aβ ≠ –b.
                            –∞
                     A solution:
                                            aλ           1–β            λb
                                                                 ∞
                              y(x)= A exp –     x ,    A    =     exp       z f(bz) dz.
                                           aβ + b                     aβ + b
                                                               –∞
                 © 1998 by CRC Press LLC




                © 1998 by CRC Press LLC
                                                                                                             Page 391
   406   407   408   409   410   411   412   413   414   415   416