Page 693 - Handbook Of Integral Equations
P. 693

where f(x) ∈ L 2 (c, d) and y(t) ∈ L 2 (a, b), the Tikhonov regularization method leads to a regularized
               nonlinear integral equation in the form

                                      b

                           αy α (x)+  M t, x, y α (t), y α (x) dt = F x, y α (x) ,  a ≤ x ≤ b,  (46)
                                    a
                                                    d

                                M t, x, y(t), y(x) =  K s, t, y(t) K s, x, y(x) ds,        (47)

                                                                y
                                                   c
                                                     d

                                       F x, y(x) =   K t, x, y(x) f(t) dt,                 (48)

                                                       y
                                                   c
               where α is a regularization parameter.
                   For instance, by applying the quadrature method on the basis of the trapezoidal rule, we can
               reduce Eq. (46) to a system of nonlinear algebraic equations. An approximate solution of (45) is
               constructed by the principle described above for linear equations (see Section 10.8).
                •
                 References for Section 14.3: N. S. Smirnov (1951), P. P. Zabreyko, A. I. Koshelev, et al. (1975), F. G. Tricomi (1985),
               A. F. Verlan’ and V. S. Sizikov (1986).




















































                 © 1998 by CRC Press LLC








               © 1998 by CRC Press LLC
                                                                                                             Page 676
   688   689   690   691   692   693   694   695   696   697   698