Page 697 - Handbook Of Integral Equations
P. 697

Trigonometric functions of multiple arguments

                          2
                                        2
               cos 2x = 2 cos x – 1=1 – 2 sin x,  sin 2x = 2 sin x cos x,
                                                                   3
                                  3
               cos 3x = –3 cos x + 4 cos x,      sin 3x = 3 sin x – 4 sin x,
                                                                        3
                             2
                                     4
               cos 4x =1 – 8 cos x + 8 cos x,    sin 4x = 4 cos x (sin x – 2 sin x),
                                                                             5
                                                                    3
                                            5
                                  3
               cos 5x = 5 cos x – 20 cos x + 16 cos x,  sin 5x = 5 sin x – 20 sin x + 16 sin x,
                            n       2  2        2       2
                                 k  n (n – 1) ... [n – (k – 1) ]  k  2k
               cos(2nx)=1 +   (–1)                        4 sin  x,
                                            (2k)!
                           k=1
                                      n
                                                   2          2  2          2       2
                                           k  [(2n+1) –1][(2n+1) –3 ] ... [(2n+1) –(2k–1) ]  2k
               cos[(2n+1)x] = cos x 1+  (–1)                                          sin  x ,
                                                               (2k)!
                                     k=1
                                       n
                                               2      2  2      2  2
                                            k  (n – 1)(n – 2 ) ... (n – k )  2k–1
               sin(2nx)=2n cos x sin x +  (–4)                        sin  x ,
                                                      (2k – 1)!
                                      k=1
                                         n
                                                     2         2  2          2      2
                                              k [(2n+1) –1][(2n+1) –3 ] ... [(2n+1) –(2k–1) ]  2k+1
               sin[(2n+1)x]=(2n+1) sin x+  (–1)                                       sin   x ,
                                                               (2k+1)!
                                        k=1
                                                    3
                                                                               3
                       2 tan x            3 tan x – tan x           4 tan x – 4 tan x
               tan 2x =       ,    tan 3x =            ,   tan 4x =                .
                                                                                4
                                                  2
                                                                          2
                           2
                      1 – tan x             1 – 3 tan x            1 – 6 tan x + tan x
                 Trigonometric functions of half argument
                                         x   1 – cos x     2  x  1 + cos x
                                       2
                                     sin   =        ,    cos   =        ,
                                         2      2            2      2
                                x    sin x    1 – cos x    x     sin x   1 + cos x
                             tan  =         =        ,  cot  =         =         ,
                                2   1 + cos x  sin x       2   1 – cos x   sin x
                                     2 tan  x 2       1 – tan 2 x 2      2 tan  x 2
                             sin x =     2 x  ,  cos x =   2 x  ,  tan x =   2 x  .
                                    1 + tan           1 + tan           1 – tan
                                           2                 2                2
                 Euler and de Moivre formulas. Relationship with hyperbolic functions
                              y
                                                           n
                                                                                 2
                       e y+ix  = e (cos x + i sin x),  (cos x + i sin x) = cos(nx)+ i sin(nx),  i = –1,
                       sin(ix)= i sinh x,  cos(ix) = cosh x,  tan(ix)= i tanh x,  cot(ix)= –i coth x.
                 Differentiation formulas
                        d sin x        d cos x         d tan x   1      d cot x    1
                              = cos x,       = – sin x,      =       ,        = –     .
                                                                                   2
                                                                  2
                         dx             dx               dx    cos x     dx      sin x
                 Expansion into power series
                                            x 2  x 4  x 6
                                   cos x =1 –  +    –   + ···     (|x| < ∞),
                                             2!  4!   6!
                                             x 3  x 5  x 7
                                   sin x = x –  +   –    + ···    (|x| < ∞),
                                             3!  5!   7!
                                             x 3  2x 5  17x 7
                                   tan x = x +  +    +      + ··· (|x| < π/2),
                                             3    15   315
                                          1  x   x 3  2x 5
                                   cot x =  –  –    –    – ···    (|x| < π).
                                          x  3   45   945
                 © 1998 by CRC Press LLC



               © 1998 by CRC Press LLC
                                                                                                             Page 681
   692   693   694   695   696   697   698   699   700   701   702