Page 699 - Handbook Of Integral Equations
P. 699

Powers of hyperbolic functions
                                                            2
                     2
                                    1
                                                                           1
                  cosh x =  1  cosh 2x + ,               sinh x =  1  cosh 2x – ,
                          2         2                            2         2
                     3
                                                            3
                  cosh x =  1  cosh 3x +  3  cosh x,     sinh x =  1  sinh 3x –  3  sinh x,
                          4         4                            4        4
                                                            4
                                                                                     3
                                              3
                     4
                  cosh x =  1  cosh 4x +  1  cosh 2x + ,  sinh x =  1  cosh 4x –  1  cosh 2x + ,
                          8         2         8                  8         2         8
                                                            5
                     5
                  cosh x =  1  cosh 5x +  5  cosh 3x +  5  cosh x,  sinh x =  1  sinh 5x –  5  sinh 3x +  5  sinh x,
                          16         16        8                 16        16        8
                                              n–1
                                          1       k                 1   n
                                   2n
                               cosh  x =        C 2n  cosh[2(n – k)x]+  C ,
                                                                        2n
                                        2 2n–1                     2 2n
                                              k=0
                                              n
                                           1      k
                                   2n+1
                               cosh   x =        C 2n+1  cosh[(2n – 2k +1)x],
                                          2 2n
                                              k=0
                                             n–1                          n
                                          1        k  k                (–1)  n
                                  2n
                               sinh  x =        (–1) C 2n  cosh[2(n – k)x]+  C ,
                                                                             2n
                                        2 2n–1                         2 2n
                                             k=0
                                              n
                                          1        k  k
                                  2n+1
                               sinh   x =       (–1) C 2n+1  sinh[(2n – 2k +1)x].
                                          2 2n
                                             k=0
                     k
               Here C m  are binomial coefficients.
                 Hyperbolic functions of multiple arguments
                                2
                  cosh 2x = 2 cosh x – 1,                sinh 2x = 2 sinh x cosh x,
                                                                              3
                                         3
                  cosh 3x = –3 cosh x + 4 cosh x,        sinh 3x = 3 sinh x + 4 sinh x,
                                                                                   3
                                            4
                                   2
                  cosh 4x =1 – 8 cosh x + 8 cosh x,      sinh 4x = 4 cosh x(sinh x + 2 sinh x),
                                                                               3
                                                   5
                                         3
                                                                                        5
                  cosh 5x = 5 cosh x – 20 cosh x + 16 cosh x,  sinh 5x = 5 sinh x + 20 sinh x + 16 sinh x.
                                                  [n/2]   k+1
                                                n     (–1)    k–2  n–2k–2     n–2k–2
                                           n
                                     n–1
                          cosh(nx)=2    cosh x +            C n–k–2 2   (cosh x)   ,
                                                2      k +1
                                                   k=0
                                                [(n–1)/2]
                                                       n–k–1  k        n–2k–1
                                  sinh(nx) = sinh x   2    C n–k–1 (cosh x)  .
                                                  k=0
                     k
               Here C m  are binomial coefficients and [A] stands for the integer part of a number A.
                 Relationship with trigonometric functions
                                                                                       2
                  sinh(ix)= i sin x,  cosh(ix) = cos x,  tanh(ix)= i tan x,  coth(ix)= –i cot x,  i = –1.
                 Differentiation formulas
                    d sinh x         d cosh x         d tanh x    1      d coth x     1
                           = cosh x,         = sinh x,        =       ,         = –      .
                                                                                       2
                                                                   2
                      dx                dx              dx      cosh x     dx      sinh x
                 Expansion into power series
                                             x 2  x 4  x 6
                                   cosh x =1 +  +    +   + ···    (|x| < ∞),
                                             2!   4!   6!
                                             x 3  x 5  x 7
                                   sinh x = x +  +   +   + ···    (|x| < ∞),
                                              3!  5!   7!
                                             x 3  2x 5  17x 7
                                   tanh x = x –  +    –     + ··· (|x| < π/2),
                                              3   15    315
                                          1   x   x 3  2x 5
                                   coth x =  +  –    +    – ···   (|x| < π).
                                          x   3   45  945
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 683
   694   695   696   697   698   699   700   701   702   703   704