Page 698 - Handbook Of Integral Equations
P. 698

1.2. Hyperbolic Functions

                 Definitions
                              x
                                                                                  x
                                               x
                                                                x
                             e – e –x         e + e –x          e – e –x         e + e –x
                      sinh x =      ,  cosh x =      ,  tanh x =      ,  coth x =       .
                                                                                  x
                                                                x
                                2                2             e + e –x          e – e –x
                 Simplest relations
                                       2
                                              2
                                   cosh x – sinh x =1,    tanh x coth x =1,
                                   sinh(–x)= – sinh x,    cosh(–x) = cosh x,
                                           sinh x                cosh x
                                   tanh x =     ,         coth x =    ,
                                          cosh x                 sinh x
                                   tanh(–x)= – tanh x,    coth(–x)= – coth x,
                                                1            2         1
                                         2
                                   1 – tanh x =  2  ,     coth x – 1=   2  .
                                              cosh x                 sinh x
                 Relations between hyperbolic functions of single argument (x ≥ 0)
                                        	               tanh x         1
                                             2
                                 sinh x =  cosh x – 1= √        = √          ,
                                                                       2
                                                             2
                                                       1 – tanh x   coth x – 1
                                                          1          coth x

                                             2
                                 cosh x =  sinh x +1 = √        = √          ,
                                                                       2
                                                             2
                                                       1 – tanh x   coth x – 1
                                                     √
                                                           2
                                           sinh x      cosh x – 1    1
                                 tanh x = √  2     =             =      ,
                                          sinh x +1     cosh x     coth x
                                        √
                                             2
                                          sinh x +1     cosh x       1
                                 coth x =          = √           =      .
                                           sinh x      cosh x – 1  tanh x
                                                           2
                 Addition formulas
                  sinh(x ± y) = sinh x cosh y ± sinh y cosh x,  cosh(x ± y) = cosh x cosh y ± sinh x sinh y,
                                       tanh x ± tanh y               coth x coth y ± 1
                          tanh(x ± y)=              ,    coth(x ± y)=              .
                                      1 ± tanh x tanh y               coth y ± coth x
                 Addition and subtraction of hyperbolic functions
                                                        x ± y       x ∓ y

                                    sinh x ± sinh y = 2 sinh  cosh        ,
                                                          2          2
                                                         x + y      x – y

                                    cosh x + cosh y = 2 cosh   cosh      ,
                                                          2          2
                                                         x + y     x – y

                                    cosh x – cosh y = 2 sinh   sinh      ,
                                                          2          2
                                 2
                                         2
                                                         2
                                                 2
                              sinh x – sinh y = cosh x – cosh y = sinh(x + y) sinh(x – y),
                                         2
                                                 2
                                     sinh x + cosh y = cosh(x + y) cosh(x – y),
                                           sinh(x ± y)                  sinh(x ± y)
                           tanh x ± tanh y =         ,  coth x ± coth y = ±       .
                                          cosh x cosh y                 sinh x sinh y
                 Products of hyperbolic functions
                                                  1
                                     sinh x sinh y = [cosh(x + y) – cosh(x – y)],
                                                  2
                                                  1
                                     cosh x cosh y = [cosh(x + y) + cosh(x – y)],
                                                  2
                                                  1
                                     sinh x cosh y = [sinh(x + y) + sinh(x – y)].
                                                  2
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 682
   693   694   695   696   697   698   699   700   701   702   703