Page 703 - Handbook Of Integral Equations
P. 703

Supplement 2


               Tables of Indefinite Integrals





               2.1. Integrals Containing Rational Functions


                 Integrals containing a + bx.*
                       dx     1

               1.           =  ln |a + bx|.
                      a + bx  b
                                       n+1
                                 (a + bx)
                           n
               2.    (a + bx) dx =        ,  n ≠ –1.
                                  b(n +1)
                      xdx     1

               3.           =   a + bx – a ln |a + bx| .
                      a + bx  b 2
                       2
                      x dx    1 1        2             2

               4.           =     (a + bx) – 2a(a + bx)+ a ln |a + bx| .
                      a + bx  b 3  2
                        dx       1

               5.             = –  ln    a + bx    .
                      x(a + bx)  a     x
                         dx       1    b

               6.              = –   +       a + bx    .
                       2
                      x (a + bx)  ax   a 2  ln   x

                       xdx      1              a
               7.             =    ln |a + bx| +    .
                      (a + bx) 2  b 2        a + bx
                       x dx     1                       a
                        2                                2
               8.             =    a + bx – 2a ln |a + bx| –  .
                      (a + bx) 2  b 3                 a + bx

                         dx         1      1
               9.              =         –       a + bx    .
                      x(a + bx) 2  a(a + bx)  a 2  ln   x

                        xdx      1     1        a
               10.             =    –      +          .
                       (a + bx) 3  b 2  a + bx  2(a + bx) 2
                 Integrals containing a + x and b + x.

                       a + x
               11.         dx = x +(a – b)ln |b + x|.
                       b + x
                           dx         1

               12.                =         b + x    , a ≠ b.For a = b, see integral 2 with n = –2.
                       (a + x)(b + x)  a – b  ln   a + x
                          xdx         1

               13.                =      a ln |a + x| – b ln |b + x| .
                       (a + x)(b + x)  a – b
                           dx             1          1

               14.                 =            +        ln    a + x    .
                       (a + x)(b + x) 2  (b – a)(b + x)  (a – b) 2  b + x
                 * Throughout this section, the integration constant C is omitted for brevity.
                 © 1998 by CRC Press LLC




               © 1998 by CRC Press LLC
                                                                                                             Page 687
   698   699   700   701   702   703   704   705   706   707   708