Page 700 - Handbook Of Integral Equations
P. 700

1.3. Inverse Trigonometric Functions

                 Definitions and some properties
                                       sin(arcsin x)= x,  cos(arccos x)= x,
                                      tan(arctan x)= x,  cot(arccot x)= x.
               Principal values of inverse trigonometric functions are defined by the inequalities

                               –  π  ≤ arcsin x ≤  π  ,  0 ≤ arccos x ≤ π  (–1 ≤ x ≤ 1),
                                 2           2
                               –  π  < arctan x <  π ,  0 < arccot x < π  (–∞ < x < ∞).
                                 2           2
                 Simplest formulas
                                 arcsin(–x)= – arcsin x,  arccos(–x)= π – arccos x,
                                 arctan(–x)= – arctan x,  arccot(–x)= π – arccot x,

                                        x – 2nπ       if 2nπ –  ≤ x ≤ 2nπ +  ,
                                                             π            π
                          arcsin(sin x)=                     2    π       2        π
                                        –x +2(n +1)π  if (2n +1)π –  ≤ x ≤ 2(n +1)π +  ,
                                                                  2                2

                                        x – 2nπ       if 2nπ ≤ x ≤ (2n +1)π,
                         arccos(cos x)=
                                        –x +2(n +1)π  if (2n +1)π ≤ x ≤ 2(n +1)π,
                                  arctan(tan x)= x – nπ  if  nπ –  π  < x < nπ +  π  ,
                                                              2           2
                                  arccot(cot x)= x – nπ  if  nπ < x <(n +1)π.
                 Relations between inverse trigonometric functions

                                  arcsin x+arccos x =  π  ,  arctan x+arccot x =  π  ;
                                                   2                      2
                                √                                       √
                                    2                                      2
                         arccos 1–x       if 0 ≤ x ≤ 1,          arcsin  1–x     if 0 ≤ x ≤ 1,
                                 √                                         √
                                                                
                                     2                                        2
                         – arccos 1–x     if –1 ≤ x ≤ 0,         π–arcsin 1–x    if –1 ≤ x ≤ 0,
                        
                                                                 
                                  x                                           2
                                                                       √
                                                                
                arcsin x =  arctan √       if –1< x <1,  arccos x =       1–x
                                 1–x 2                            arctan          if 0 < x ≤ 1,
                        
                               √                                         x
                                                                
                                 1–x
                                    2                                    x
                                                                
                                                                 
                                                                 arccot √        if –1< x <1;
                         arccot      –π   if –1 ≤ x <0;
                                  x                                       1–x 2
                                  x                                        1
                                                                
                         arcsin √        for any x,                               if x >0,
                        
                                                                  arcsin √
                                 1+x                                          2
                                    2                           
                                                                        1+x
                                                                
                                                                
                                 1                              
                                                                            1
                         arccos √        if x ≥ 0,                                if x <0,
                        
                                                                 
                                 1+x 2                           π–arcsin √   2
               arctan x =                               arccot x =           1+x
                                    1
                                                                       1
                         – arccos √      if x ≤ 0,               arctan           if x >0,
                        
                                                                 
                                                                 
                                   1+x
                                      2
                                                                       x
                                                                
                                                                
                                1                                          1
                                                                
                         arccot          if x >0;                π+arctan         if x <0.
                                                                
                        
                                                                 
                                x                                          x
                 Addition and subtraction of inverse trigonometric functions
                                                          √
                                                 	                           2   2
                                                       2
                         arcsin x + arcsin y = arcsin x 1 – y + y 1 – x 2  for  x + y ≤ 1,

                                                                   2
                                                             2
                        arccos x ± arccos y = ± arccos xy ∓  (1 – x )(1 – y )  for  x ± y ≥ 0,
                                                         x + y
                                  arctan x + arctan y = arctan  for  xy <1,
                                                         1 – xy
                                                         x – y
                                  arctan x – arctan y = arctan  for  xy > –1.
                                                         1+ xy
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 684
   695   696   697   698   699   700   701   702   703   704   705