Page 696 - Handbook Of Integral Equations
P. 696

Addition formulas

                        sin(x ± y) = sin x cos y ± cos x sin y,  cos(x ± y) = cos x cos y ∓ sin x sin y,
                                   tan x ± tan y                   1 ∓ tan x tan y
                        tan(x ± y)=           ,         cot(x ± y)=            .
                                   1 ∓ tan x tan y                  tan x ± tan y

                 Addition and subtraction of trigonometric functions
                                                       x + y     x – y

                                      sin x + sin y = 2 sin  cos       ,
                                                         2         2
                                                       x – y     x + y

                                      sin x – sin y = 2 sin  cos       ,
                                                         2         2
                                                       x + y      x – y

                                      cos x + cos y = 2 cos   cos      ,
                                                         2         2
                                                        x + y     x – y

                                      cos x – cos y = –2 sin  sin       ,
                                                          2         2
                                          2
                                   2
                                                        2
                                                 2
                                 sin x – sin y = cos y – cos x = sin(x + y) sin(x – y),
                                                2
                                         2
                                       sin x – cos y = – cos(x + y) cos(x – y),
                                             sin(x ± y)              sin(y ± x)
                                tan x ± tan y =      ,  cot x ± cot y =      ,
                                            cos x cos y              sin x sin y
                                     a cos x + b sin x = r sin(x + ϕ)= r cos(x – ψ).
                       √
                              2
                          2
               Here r =  a + b , sin ϕ = a/r, cos ϕ = b/r, sin ψ = b/r, and cos ψ = a/r.
                 Products of trigonometric functions
                                                  1
                                       sin x sin y = [cos(x – y) – cos(x + y)],
                                                  2
                                                  1
                                       cos x cos y = [cos(x – y) + cos(x + y)],
                                                  2
                                                  1
                                       sin x cos y = [sin(x – y) + sin(x + y)].
                                                  2
                 Powers of trigonometric functions
                                                                          1
                                                                 1
                                                           2
                                       1
                         2
                      cos x =  1  cos 2x + ,             sin x = – cos 2x + ,
                              2        2                         2        2
                                                                 1
                         3
                                                           3
                      cos x =  1  cos 3x +  3  cos x,    sin x = – sin 3x +  3  sin x,
                              4        4                         4       4
                                               3
                                                                                 3
                                                           4
                         4
                      cos x =  1  cos 4x +  1  cos 2x + ,  sin x =  1  cos 4x –  1  cos 2x + ,
                              8        2       8                8        2       8
                                                           5
                         5
                      cos x =  1  cos 5x +  5  cos 3x +  5  cos x,  sin x =  1  sin 5x –  5  sin 3x +  5  sin x,
                              16       16        8              16       16       8
                                             n–1
                                          1       k                1   n
                                   2n
                                cos  x =        C 2n  cos[2(n – k)x]+  C ,
                                                                       2n
                                        2 2n–1                    2 2n
                                              k=0
                                              n
                                           1      k
                                   2n+1
                                cos   x =        C 2n+1  cos[(2n – 2k +1)x],
                                          2 2n
                                              k=0
                                             n–1
                                          1        n–k  k               1   n
                                  2n
                                sin  x =        (–1)  C 2n  cos[2(n – k)x]+  C ,
                                                                            2n
                                        2 2n–1                         2 2n
                                             k=0
                                              n
                                          1        n–k  k
                                  2n+1
                                sin   x =       (–1)  C 2n+1  sin[(2n – 2k +1)x].
                                          2 2n
                                             k=0
                            m!
                     k
               Here C  =           are binomial coefficients (0! = 1).
                     m
                         k!(m – k)!
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 680
   691   692   693   694   695   696   697   698   699   700   701