Page 701 - Handbook Of Integral Equations
P. 701

Differentiation formulas

                d             1      d             1      d            1     d             1
                   arcsin x = √   ,    arccos x = – √  ,    arctan x =    ,    arccot x = –   .
                dx           1–x 2  dx            1–x 2   dx         1+x 2  dx           1+x 2
                 Expansion into power series
                                          1 x 3  1 ⋅ 3 x 5  1 ⋅ 3 ⋅ 5 x 7
                              arcsin x = x +   +       +           + ··· (|x| < 1),
                                          2 3    2 ⋅ 4 5  2 ⋅ 4 ⋅ 6 7
                                          x 3  x 5  x 7
                              arctan x = x –  +   –   + ···             (|x|≤ 1),
                                           3   5    7
                                       π   1    1    1
                              arctan x =  –  +     –    + ···           (|x| > 1).
                                       2   x   3x 3  5x 5
               The expansions for arccos x and arccot x can be obtained with the aid of the formulas arccos x =
                π                     π
                2  – arcsin x and arccot x =  2  – arctan x.

               1.4. Inverse Hyperbolic Functions

                 Relationship with logarithmic function

                                              √                         1+ x
                                                                    1
                               Arsinh x =ln x +  x +1 ,    Artanh x =  ln    ,
                                                 2
                                                                    2   1 – x
                                              √
                                                 2                  1   1+ x
                               Arcosh x =ln x +  x – 1 ,   Arcoth x =  ln    ;
                                                                    2   x – 1
                               Arsinh(–x)= –Arsinh x,      Artanh(–x)= –Artanh x,
                               Arcosh(–x) = Arcosh x,      Arcoth(–x)= –Arcoth x.
                 Relations between inverse hyperbolic functions
                                                   √                 x
                                                      2
                                    Arsinh x = Arcosh x + 1 = Artanh √   ,
                                                                     2
                                                                    x +1
                                                                  √
                                                                     2
                                                   √                x – 1
                                                      2
                                    Arcosh x = Arsinh x – 1 = Artanh     ,
                                                                     x
                                                 x              1            1
                               Artanh x = Arsinh √    = Arcosh √     = Arcoth  .
                                                1 – x 2        1 – x 2       x
                 Addition and subtraction of inverse hyperbolic functions
                                                                     √

                                                                 2
                                Arsinh x ± Arsinh y = Arsinh x 1+ y ± y 1+ x 2  ,

                                                                  2     2
                                Arcosh x ± Arcosh y = Arcosh xy ±  (x – 1)(y – 1) ,

                                                                  2     2
                                Arsinh x ± Arcosh y = Arsinh xy ±  (x + 1)(y – 1) ,
                                                x ± y                            xy ± 1
                      Artanh x ± Artanh y = Artanh   ,  Artanh x ± Arcoth y = Artanh   .
                                               1 ± xy                            y ± x
                 Differentiation formulas
                            d             1              d              1
                              Arsinh x = √    ,            Arcosh x = √     ,
                           dx            x +1           dx             x – 1
                                                                        2
                                          2
                           d             1      2        d             1      2
                              Artanh x =      (x < 1),     Arcoth x =       (x > 1).
                           dx          1 – x 2           dx          1 – x 2
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 685
   696   697   698   699   700   701   702   703   704   705   706