Page 762 - Handbook Of Integral Equations
P. 762

Supplement 8


               Tables of Mellin Transforms





               8.1. General Formulas

                                                                              ∞      s–1

                                                                        ˆ
                 No       Original function, f(x)       Mellin transform, f(s)=  f(x)x  dx
                                                                             0
                                                             ˆ
                                                      ˆ
                  1   af 1 (x)+ bf 2 (x)             af 1 (s)+ bf 2 (s)
                                                      –s ˆ
                  2   f(ax), a >0                    a f(s)
                       a
                                                     ˆ
                  3   x f(x)                         f(s + a)
                                                     ˆ
                  4   f(1/x)                         f(–s)
                                                     1
                                                          s
                          β
                  5   f x , β >0                       f ˆ
                                                     β   β
                                                     1     s
                                                       ˆ
                          –β
                  6   f x  , β >0                      f –
                                                     β    β
                            β
                                                          β ˆ
                       λ


                                                       a
                                                            f
                  7   x f ax , a, β >0               1 –  s+λ   s + λ
                                                     β          β
                                                     1  s+λ    s + λ
                            –β
                       λ


                                                           f –
                  8   x f ax   , a, β >0               a  β ˆ
                                                     β          β
                                                           ˆ

                  9   f (x)                          –(s – 1)f(s – 1)
                       x
                                                       ˆ

                 10   xf (x)                         –sf(s)
                        x
                                                           Γ(s)
                                                                 ˆ
                                                        n
                 11   f x (n) (x)                    (–1)       f(s – n)
                                                         Γ(s – n)
                         d                              n n ˆ
                             n
                 12    x     f(x)                    (–1) s f(s)
                        dx
                        d                               n     n ˆ
                             n
                 13       x  f(x)                    (–1) (s – 1) f(s)
                       dx
                          ∞

                             β
                                                     ˆ
                                                             ˆ
                 14   x α   t f 1 (xt)f 2 (t) dt     f 1 (s + α)f 2 (1 – s – α + β)
                         0

                                 x
                          ∞
                             β
                                                     ˆ
                                                             ˆ
                 15   x α   t f 1   f 2 (t) dt       f 1 (s + α)f 2 (s + α + β +1)
                         0       t
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 747
   757   758   759   760   761   762   763   764   765   766   767