Page 763 - Handbook Of Integral Equations
P. 763

8.2. Expressions With Power-Law Functions

                                                                              ∞      s–1

                                                                        ˆ
                 No       Original function, f(x)       Mellin transform, f(s)=  f(x)x  dx
                                                                             0
                       x     if 0 < x <1,              2(2 – 1)
                                                          s
                  1    2 – x if 1 < x <2,              s(s +1)  if s ≠ 0,  Re s > –1
                       0     if 2 < x                  2ln2     if s =0,
                       1                              πa s–1
                  2       ,  a >0                          ,  0<Re s <1
                      x + a                          sin(πs)
                                                         s–1  s–1
                           1                         π a   – b
                  3              ,  a, b >0                      ,  0 < Re s <2
                      (x + a)(x + b)                 (b – a) sin(πs)
                         x + a                         π       b – a    b s–1  +     c – a    c s–1    ,
                  4              ,  b, c >0          sin(πs)  b – c       c – b
                      (x + b)(x + c)
                                                     0<Re s <1
                        1                              πa s–2
                  5    2   2  ,  a >0                       1    ,  0<Re s <2
                      x + a                          2 sin  πs
                                                          2

                             1                        πa s–2  sin β(s – 1)
                  6                  , a >0, |β| < π  –              ,  0<Re s <2
                       2
                      x +2ax cos β +a 2                  sin β sin(πs)
                                                            s–2  s–2
                            1                          π a   – b
                  7     2   2  2  2  ,  a, b >0                   1    ,  0<Re s <4
                                                           2
                      (x + a )(x + b )               2(b – a ) sin  πs
                                                        2
                                                                 2
                                                         n
                          1                           (–1) π   n
                  8         n+1  ,  a >0, n =1, 2, ...  s    C s–1 ,  0<Re s < n +1
                      (1 + ax)                       a sin(πs)
                         1                             πa s–n
                  9          ,  a >0, n =1, 2, ...             ,  0 < Re s < n
                       n
                      x + a n                        n sin(πs/n)
                      1 – x                                 π sin(π/n)
                 10        ,  n =2, 3, ...                                   ,  0 < Re s < n – 1
                      1 – x n                        n sin(πs/n) sin π(s +1)/n
                       x   if 0 < x <1,                1
                         ν
                 11                                      ,  Re s > –ν
                       0   if 1 < x                  s + ν
                      1 – x ν                             π sin(π/n)
                 12         ,  n =2, 3, ...                  πs        π(s+ν)   ,  0 < Re s <(n – 1)ν
                      1 – x nν                       nν sin    sin
                                                           nν      nν
               8.3. Expressions With Exponential Functions
                                                                                ∞
                                                                        ˆ
                 No       Original function, f(x)       Mellin transform, f(s)=  f(x)x s–1  dx
                                                                             0
                                                      –s
                  1   e –ax ,  a >0                  a Γ(s),  Re s >0
                         –bx
                       e     if 0 < x < a,            –s
                  2                       b >0       b γ(s, ab),  Re s >0
                       0     if a < x,

                       0     if 0 < x < a,            –s
                  3     –bx               b >0       b Γ(s, ab)
                       e     if a < x,
                      e –ax                           ab s–1
                  4       ,  a, b >0                 e b  Γ(s)Γ(1 – s, ab),  Re s >0
                      x + b
                            β                         –1 –s/β
                  5   exp –ax ,  a, β >0             β a    Γ(s/β),  Re s >0


                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 748
   758   759   760   761   762   763   764   765   766   767   768