Page 764 - Handbook Of Integral Equations
P. 764

∞
                                                                        ˆ
                 No       Original function, f(x)       Mellin transform, f(s)=  f(x)x s–1  dx
                                                                             0
                            –β                        –1 s/β
                  6   exp –ax  ,  a, β >0            β a   Γ(–s/β),  Re s <0
                               β                       –1 –s/β
                  7   1 – exp –ax ,  a, β >0         –β a    Γ(s/β),  –β <Re s <0
                                                       –1 s/β

                  8   1 – exp –ax –β    ,  a, β >0   –β a   Γ(–s/β),  0<Re s < β
               8.4. Expressions With Logarithmic Functions

                                                                              ∞      s–1

                                                                        ˆ
                 No       Original function, f(x)       Mellin transform, f(s)=  f(x)x  dx
                                                                             0
                       ln x if 0 < x < a,            s ln a – 1

                  1                                         ,  Re s >0
                       0    if a < x                   s a
                                                        2 s
                                                         π
                  2   ln(1 + ax),  a >0                s      ,  –1<Re s <0
                                                     sa sin(πs)
                                                     π
                  3   ln |1 – x|                       cot(πs),  –1<Re s <0
                                                     s
                      ln x                           πa s–1    ln a – π cot(πs)
                  4       ,  a >0                                       ,  0 < Re s <1
                      x + a                                sin(πs)
                                                         s–1    s–1             s–1  s–1
                          ln x                       π a   ln a – b  ln b – π cot(πs)(a  – b  )
                  5              ,  a, b >0                      (b – a) sin(πs)         ,
                      (x + a)(x + b)
                                                     0<Re s <1
                       x ln x if 0 < x <1,               1
                         ν
                  6                                  –     2  ,  Re s > –ν
                       0       if 1 < x               (s + ν)
                                                      3
                                                             2

                        2
                      ln x                           π 2 – sin (πs)
                  7                                        3      ,  0<Re s <1
                      x +1                              sin (πs)

                         ν–1
                       ln   x if 0 < x <1,                  –ν
                  8                                  Γ(ν)(–s) ,  Re s <0, ν >0
                       0       if 1 < x
                                                     2π cos(βs)
                          2
                  9   ln x +2x cos β +1 ,  |β| < π            ,  –1<Re s <0
                                                      s sin(πs)
                                                     π      1
                 10      1+ x                          tan  2  πs ,  –1<Re s <1
                        1 – x                        s
                      ln
                                                     d n
                          n
                      –x
                 11   e  ln x,  n =1, 2, ...            Γ(s),  Re s >0
                                                     ds n
               8.5. Expressions With Trigonometric Functions
                                                                                ∞
                                                                        ˆ
                 No       Original function, f(x)       Mellin transform, f(s)=  f(x)x s–1  dx
                                                                             0
                                                      –s

                  1   sin(ax),  a >0                 a Γ(s) sin   1 πs ,  –1<Re s <1
                                                              2
                        2

                                                         a Γ(s) cos
                  2   sin (ax),  a >0                –2 –s–1 –s      1 2  πs ,  –2<Re s <0
                                                     1  Γ(s) cos   1  πs |b – a| – (b + a) –s    ,
                                                                       –s

                  3   sin(ax) sin(bx),  a, b >0, a ≠ b  2     2
                                                     –2<Re s <1
                 © 1998 by CRC Press LLC


               © 1998 by CRC Press LLC
                                                                                                             Page 749
   759   760   761   762   763   764   765   766   767   768   769