Page 765 - Handbook Of Integral Equations
P. 765

∞      s–1

                                                                        ˆ
                 No       Original function, f(x)       Mellin transform, f(s)=  f(x)x  dx
                                                                             0
                                                      –s

                  4   cos(ax),  a >0                 a Γ(s) cos    1  πs ,  0<Re s <1
                                                               2
                                                     Γ(s)     πs       –s      –s

                  5   sin(ax) cos(bx),  a, b >0       2  sin  2  (a + b) + |a – b| sign(a – b) ,
                                                     –1<Re s <1

                                                     Γ(s) sin s arctan(b/a)
                      –ax
                  6   e  sin(bx),  a >0                                ,  –1<Re s
                                                           2
                                                          (a + b )
                                                               2 s/2

                                                     Γ(s) cos s arctan(b/a)
                      –ax
                  7   e  cos(bx),  a >0                                 ,  0<Re s
                                                          (a + b )
                                                           2
                                                               2 s/2
                       sin(a ln x)if 0 < x <1,
                                                        a
                  8                                  –  2  2  ,  Re s >0
                       0         if 1 < x             s + a
                       cos(a ln x)if 0 < x <1,
                                                       s
                  9                                   2   2  ,  Re s >0
                       0          if 1 < x           s + a
                                                          π
                 10   arctan x                       –        1    ,  –1<Re s <0
                                                      2s cos  πs
                                                            2
                                                         π
                 11   arccot x                               1    ,  0 < Re s <1
                                                     2s cos  πs
                                                           2
               8.6. Expressions With Special Functions
                                                                              ∞      s–1

                                                                        ˆ
                 No       Original function, f(x)       Mellin transform, f(s)=  f(x)x  dx
                                                                             0
                                                        1   1
                                                     Γ  2  s +  2
                  1   erfc x                           √      ,  Re s >0
                                                         π s
                                                       –1
                  2   Ei(–x)                         –s Γ(s),  Re s >0
                                                       –1

                  3   Si(x)                          –s sin    1 2  πs Γ(s),  –1<Re s <0
                                                        –1

                  4   si(x)                          –4s sin    1  πs Γ(s),  –1<Re s <0
                                                             2
                                                       –1

                  5   Ci(x)                          –s cos   1 πs Γ(s),  0<Re s <1
                                                            2
                                                                1
                                                      2 s–1 Γ    1 2  ν + s      3
                                                                2
                  6   J ν (ax),  a >0                     1   1      ,  –ν <Re s <  2
                                                      s
                                                     a Γ  ν – s +1
                                                         2    2
                                                      2 s–1    s  ν       s  ν       π(s – ν)
                                                     –   Γ    +    Γ   –    cos         ,
                  7   Y ν (ax),  a >0                 πa s  2   2    2   2         2
                                                     |ν| <Re s <  3
                                                               2
                                                      Γ(1/2 – s)Γ(s + ν)           1
                      –ax
                  8   e  I ν (ax),  a >0             √      s         ,  –ν <Re s <  2
                                                       π (2a) Γ(1 + ν – s)
                                                     2 s–2    s  ν       s  ν
                  9   K ν (ax),  a >0                   Γ    +    Γ   –    ,  |ν| <Re s
                                                      a s  2   2    2   2
                                                     √
                                                       π Γ(s – ν)Γ(s + ν)
                      –ax
                 10   e  K ν (ax),  a >0                              ,  |ν| <Re s
                                                          s
                                                       (2a) Γ(s +1/2)
                •
                 References for Supplement 8: H. Bateman and A. Erd´ elyi (1954), V. A. Ditkin and A. P. Prudnikov (1965).
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 750
   760   761   762   763   764   765   766   767   768   769   770