Page 766 - Handbook Of Integral Equations
P. 766

Supplement 9


               Tables of Inverse Mellin Transforms






               See Section 8.1 of Supplement 8 for general formulas.

               9.1. Expressions With Power-Law Functions


                                                                            1     σ+i∞   –s
                                          ˆ
                                                                                     ˆ
                 No        Direct transform, f(s)    Inverse transform, f(x)=       f(s)x ds
                                                                           2πi  σ–i∞
                      1                                 1if 0 < x <1,
                  1    ,  Re s >0
                      s                               0if 1 < x
                      1                                 0  if 0 < x <1,
                  2    ,  Re s <0
                      s                               –1if 1 < x
                       1                                x a  if 0 < x <1,
                  3       ,  Re s > –a
                      s + a                           0   if 1 < x
                       1                                0  if 0 < x <1,
                  4       ,  Re s < –a                  a
                      s + a                           –x   if 1 < x
                                                        a
                        1                               –x ln x if 0 < x <1,
                  5        2  ,  Re s > –a
                      (s + a)                         0        if 1 < x
                        1                               0     if 0 < x <1,
                  6        2  ,  Re s < –a             a
                      (s + a)                         x ln x if 1 < x
                                                        a   b
                           1                           x – x
                  7              ,  Re s > –a, –b              if 0 < x <1,
                      (s + a)(s + b)                    b – a
                                                       0       if 1 < x
                                                        x
                                                        a
                                                            if 0 < x <1,
                           1                           b – a
                  8              ,  –a <Re s < –b        b
                      (s + a)(s + b)                  x
                                                            if 1 < x
                                                       b – a
                                                       0       if 0 < x <1,

                           1                            b   a
                  9              ,  Re s < –a, –b      x – x
                      (s + a)(s + b)                           if 1 < x
                                                        b – a

                          1                            1 x sin b ln  1  if 0 < x <1,
                                                         a
                 10        2   2  ,  Re s > –a         b          x
                      (s + a) + b
                                                       0              if 1 < x
                         s + a                          x cos(b ln x)if 0 < x <1,
                                                       a
                 11        2   2  ,  Re s > –a
                      (s + a) + b                     0            if 1 < x
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 751
   761   762   763   764   765   766   767   768   769   770   771