Page 773 - Handbook Of Integral Equations
P. 773

Pochhammer symbol (k =1, 2, ... )

                                                    Γ(a + n)    n  Γ(1 – a)
                         (a) n = a(a +1) ... (a + n – 1) =  =(–1)           ,
                                                     Γ(a)         Γ(1 – a – n)
                                                             (n + k – 1)!
                         (a) 0 =1,  (a) n+k =(a) n (a + n) k ,  (n) k =  ,
                                                              (n – 1)!
                                Γ(a – n)   (–1) n
                         (a) –n =       =       ,  where a ≠ 1, ... , n;
                                  Γ(a)    (1 – a) n
                                               (2n)!           –2n  (2n + 1)!
                                            –2n
                         (1) n = n!,  (1/2) n =2    ,  (3/2) n =2         ,
                                                n!                   n!
                                     (a) mk+nk           (a) 2n           (a) k (a + k) n
                         (a + mk) nk =       ,  (a + n) n =   ,  (a + n) k =        .
                                       (a) mk            (a) n               (a) n
                 Bernoulli numbers, B n
                   Definition:
                                                       ∞
                                                 x          x n
                                                    =    B n   .
                                                x
                                               e – 1        n!
                                                      n=0
                   The numbers:
                                           1
                                  1
                    B 0 =1,  B 1 = – ,  B 2 = ,  B 4 = –  1  ,  B 6 =  1  ,  B 8 = –  1  ,  B 10 =  5  ,  ... ,
                                  2        6        30        42        30        66
                    B 2m+1 = 0  for m =1, 2, ...

               10.2. Error Functions and Integral Exponent

                 Error function and complementary error function (probability integrals)
                   Definitions:
                                     x                                    ∞

                                2          2                         2           2
                         erf x = √    exp(–t ) dt,  erfc x =1 – erf x = √  exp(–t ) dt.
                                 π                                    π
                                    0                                    x
                   Expansion of erf x into series in powers of x as x → 0:
                                       ∞          2k+1                ∞    k 2k+1
                                    2        k  x          2        2       2 x
                            erf x = √    (–1)           = √ exp –x               .
                                    π         (k)!(2k +1)   π            2k + 1)!!
                                       k=0                            k=0
                   Asymptotic expansion of erfc x as x →∞:

                                             M–1
                                                     1
                                1        2        m  2 m        –2M–1
                        erfc x = √ exp –x      (–1)       + O |x|     ,    M =1, 2, ...
                                 π                  x 2m+1
                                            m=0
                 Integral exponent
                   Definition:
                                          x
                                             t
                                            e
                                  Ei(x)=       dt                  for  x <0,
                                             t
                                         –∞
                                               –ε  e t     x  e t

                                  Ei(x) = lim       dt +      dt   for  x >0.
                                        ε→+0      t      ε  t
                                              –∞
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 758
   768   769   770   771   772   773   774   775   776   777   778