Page 778 - Handbook Of Integral Equations
P. 778

Recurrent formulas
                                                               α –x
                                          γ(α +1, x)= αγ(α, x) – x e ,
                                                               α –x
                                          Γ(α +1, x)= αΓ(α, x)+ x e .

                 Asymptotic expansions as x → 0:
                                                  ∞     n α+n
                                                     (–1) x
                                          γ(α, x)=            ,
                                                     n!(α + n)
                                                  n=0
                                                        ∞     n α+n
                                                           (–1) x
                                          Γ(α, x)= Γ(α) –           .
                                                           n!(α + n)
                                                        n=0
                 Asymptotic expansions as x →∞:

                                                 M–1
                                                    (1 – α) m
                                             e
                           γ(α, x)= Γ(α) – x α–1 –x         + O |x| –M  ,
                                                     (–x) m
                                                 m=0
                                            M–1
                                               (1 – α) m     –M        3        3
                                    α–1 –x
                           Γ(α, x)= x  e              + O |x|       – π <arg x <  2  .
                                                                     2
                                                (–x) m
                                           m=0
                 Integral functions related to the gamma function:
                                  1     1  2           1      1  2
                          erf x = √ γ   , x ,  erfc x = √ Γ   , x ,  Ei(–x)= –Γ(0, x).
                                  π    2                π   2
                 Incomplete beta function:
                                                     1

                                          B x (p, q)=  t p–1 (1 – t) q–1  dt,
                                                    0
               where Re x > 0 and Re y >0.


               10.6. Bessel Functions


                 Definition and basic formulas
                   The Bessel function of the first kind, J ν (x), and the Bessel function of the second kind, Y ν (x)
               (also called the Neumann function), are solutions of the Bessel equation
                                                         2
                                                             2

                                            2
                                           x y  + xy +(x – ν )y =0
                                              xx    x
               and are defined by the formulas
                                     ∞     k    ν+2k
                                        (–1) (x/2)            J ν (x) cos πν – J –ν (x)
                             J ν (x)=               ,  Y ν (x)=                 .           (1)
                                        k! Γ(ν + k +1)              sin πν
                                    k=0
               The formula for Y ν (x) is valid for ν ≠ 0, ±1, ±2, ... (the cases ν ≠ 0, ±1, ±2, ... are discussed in
               what follows).
                   The general solution of the Bessel equation has the form Z ν (x)= C 1 J ν (x)+ C 2 Y ν (x) and is
               called the cylinder function.




                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 763
   773   774   775   776   777   778   779   780   781   782   783