Page 780 - Handbook Of Integral Equations
P. 780

Wronskians and similar formulas

                                                2                        2
                                  W(J ν , J –ν )= –  sin(πν),  W(J ν , Y ν )=  ,
                                               πx                       πx
                                               2 sin(πν)                               2
                    J ν (x)J –ν+1 (x)+ J –ν (x)J ν–1 (x)=  ,  J ν (x)Y ν+1 (x) – J ν+1 (x)Y ν (x)= –  .
                                                  πx                                  πx
               Here the notation W(f, g)= fg – f g is used.


                                         x  x
                 Integral representations
                   The functions J ν and Y ν can be represented in the form of definite integrals (for x > 0):
                                      π                         ∞
                           πJ ν (x)=   cos(x sin θ – νθ) dθ – sin πν  exp(–x sinh t – νt) dt,
                                    0                         0
                                     π
                                                           ∞
                           πY ν (x)=   sin(x sin θ – νθ) dθ –  (e νt  + e –νt  cos πν)e –x sinh t  dt.
                                    0                    0
                          1
                   For |ν| < , x >0,
                          2
                                                  x
                                               2 1+ν –ν     ∞  sin(xt) dt
                                      J ν (x)=     1          2   ν+1/2  ,
                                             π 1/2 Γ( – ν)  1  (t – 1)
                                                   2
                                                   x
                                                2 1+ν –ν     ∞  cos(xt) dt
                                      Y ν (x)= –    1          2   ν+1/2  .
                                              π 1/2 Γ( – ν)  1  (t – 1)
                                                    2
                          1
                   For ν > – ,
                          2
                                   2(x/2) ν     π/2          2ν
                          J ν (x)=               cos(x cos t) sin  tdt  (Poisson’s formula).
                                       1
                                 π 1/2 Γ( + ν)  0
                                       2
                   For ν =0, x >0,
                                  2     ∞                       2     ∞
                           J 0 (x)=     sin(x cosh t) dt,  Y 0 (x)= –  cos(x cosh t) dt.
                                  π  0                          π  0
                   For integer ν = n =0, 1, 2, ... ,
                                         1     π
                                  J n (x)=    cos(nt – x sin t) dt  (Bessel’s formula),
                                         π  0
                                             π/2
                                         2

                                 J 2n (x)=      cos(x sin t) cos(2nt) dt,
                                         π
                                            0
                                         2     π/2
                                J 2n+1 (x)=     sin(x sin t) sin[(2n +1)t] dt.
                                         π  0
                 Integrals with Bessel functions
                  x                  λ+ν+1                                  2
                    λ               x              λ + ν +1 λ + ν +3       x
                   x J ν (x) dx=  ν             F          ,        , ν+1; –  ,    Re(λ+ν)>–1,
                 0            2 (λ + ν +1) Γ(ν +1)    2        2           4
               where F(a, b, c; x) is the hypergeometric series (see Section 10.9 of this supplement),
                  x             cos(νπ)Γ(–ν)          λ + ν +1    λ + ν +3   x 2
                    λ
                   x Y ν (x) dx = –  ν      x λ+ν+1 F       , ν +1,       , –
                 0              2 π(λ + ν +1)          2              2      4
                                  ν
                                 2 Γ(ν)  λ–ν+1    λ – ν +1    λ – ν +3  x 2
                              –         x    F          ,1 – ν,       , –   ,    Re λ > |Re ν| – 1.
                                λ – ν +1           2             2       4


                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 765
   775   776   777   778   779   780   781   782   783   784   785