Page 782 - Handbook Of Integral Equations
P. 782

and are defined by the formulas

                                        ∞        2k+ν
                                             (x/2)                  π I –ν – I ν
                                 I ν (x)=              ,    K ν (x)=        ,
                                           k! Γ(ν + k +1)           2 sin πν
                                        k=0
               (see below for K ν (x) with ν =0, 1, 2, ... ).
                   The modified Bessel functions possess the properties

                                                           n
                               K –ν (x)= K ν (x);  I –n (x)=(–1) I n (x),  n =0, 1, 2, ...
                          2νI ν (x)= x[I ν–1 (x) – I ν+1 (x)],  2νK ν (x)= –x[K ν–1 (x) – K ν+1 (x)],
                         d        1                     d          1
                           I ν (x)=  [I ν–1 (x)+ I ν+1 (x)],  K ν (x)= – [K ν–1 (x)+ K ν+1 (x)].
                         dx       2                     dx         2
                                                      1
                 Modified Bessel functions for ν = ±n ± , where n = 0,1,2, ...
                                                      2

                                             2                      2
                                  I 1/2 (x)=   sinh x,  I –1/2 (x)=   cosh x,
                                            πx                     πx


                                 2    1                            2    1
                      I 3/2 (x)=    –  sinh x + cosh x ,  I –3/2 (x)=  –  cosh x + sinh x ,
                                πx    x                            πx   x
                                           n                         n
                                                  k
                                   1     x     (–1) (n + k)!    n –x       (n + k)!
                       I n+1/2 (x)= √   e                k  – (–1) e                k  ,
                                   2πx       k!(n – k)! (2x)            k!(n – k)! (2x)
                                          k=0                       k=0
                                           n      k                  n
                                   1     x     (–1) (n + k)!    n –x       (n + k)!

                       I –n–1/2 (x)= √  e                 k  +(–1) e                k  ,
                                   2πx        k!(n – k)! (2x)           k!(n – k)! (2x)
                                          k=0                        k=0

                                            π  –x                 π      1     –x
                               K ±1/2 (x)=    e ,    K ±3/2 (x)=      1+    e ,
                                           2x                     2x     x
                                                              n

                                                        π  –x       (n + k)!
                               K n+1/2 (x)= K –n–1/2 (x)=  e                  .
                                                       2x        k!(n – k)! (2x) k
                                                             k=0
                 Modified Bessel functions ν = n, where n = 0,1,2, ...
                   If ν = n is a nonnegative integer, then
                                          n–1
                                                   x
                                    x   1      m     2m–n  (n – m – 1)!
                          n+1
               K n (x)=(–1)  I n (x)ln  +   (–1)
                                    2   2          2         m!
                                         m=0
                                         1    n     x  n+2m  ψ(n + m +1)+ ψ(m +1)
                                                ∞
                                       +   (–1)                                ;  n =0, 1, 2, ... ,
                                         2          2           m!(n + m)!
                                               m=0
               where ψ(z) is the logarithmic derivative of the gamma function; for n = 0, the first sum is dropped.
                 Wronskians and similar formulas.
                                                 2                      1
                                    W(I ν , I –ν )= –  sin(πν),  W(I ν , K ν )= – ,
                                                πx                      x
                                                 2 sin(πν)                            1
                      I ν (x)I –ν+1 (x) – I –ν (x)I ν–1 (x)= –  ,  I ν (x)K ν+1 (x)+ I ν+1 (x)K ν (x)=  ,
                                                   πx                                 x
               where W(f, g)= fg – f g.


                                x
                                    x
                 © 1998 by CRC Press LLC








               © 1998 by CRC Press LLC
                                                                                                             Page 767
   777   778   779   780   781   782   783   784   785   786   787