Page 786 - Handbook Of Integral Equations
P. 786

Integral representations

                                                1

                                       Γ(b)       xt a–1    b–a–1
                         Φ(a, b; x)=             e t   (1 – t)  dt    (for b > a > 0),
                                   Γ(a) Γ(b – a)  0
                                     1     ∞  –xt a–1  b–a–1
                         Ψ(a, b; x)=        e  t  (1 + t)  dt        (for a >0, x > 0),
                                   Γ(a)
                                         0
               where Γ(a) is the gamma function.
                 Integrals with degenerate hypergeometric functions

                                           b – 1

                              Φ(a, b; x) dx =  Ψ(a – 1, b – 1; x)+ C,
                                           a – 1
                                             1

                              Ψ(a, b; x) dx =  Ψ(a – 1, b – 1; x)+ C,
                                           1 – a
                                             n+1
                                                    k+1       n–k+1
                                                 (–1)  (1 – b) k x
                             n
                            x Φ(a, b; x) dx = n!                  Φ(a – k, b – k; x)+ C,
                                                  (1 – a) k (n – k + 1)!
                                              k=1
                                             n+1
                                                      k+1 n–k+1
                                                   (–1)  x
                             n
                            x Ψ(a, b; x) dx = n!                 Ψ(a – k, b – k; x)+ C.
                                                 (1 – a) k (n – k + 1)!
                                              k=1
                 Asymptotic expansion as |x| →∞.
                                                N
                                     Γ(b)  x a–b     (b – a) n (1 – a) n  –n
                          Φ(a, b; x)=    e x                    x  + ε ,  x >0,
                                     Γ(a)               n!
                                                n=0
                                                  N
                                      Γ(b)     –a     (a) n (a – b +1) n  –n
                          Φ(a, b; x)=      (–x)                   (–x)  + ε ,  x <0,
                                     Γ(b – a)              n!
                                                  n=0
                                         N
                          Ψ(a, b; x)= x –a    (–1) n  (a) n (a – b +1) n  x –n  + ε ,  –∞ < x < ∞,
                                                      n!
                                         n=0
               where ε = O(x –N–1 ).
               10.9. Hypergeometric Functions
                 Definition
                   The hypergeometric functions F(α, β, γ; x) is a solution the Gaussian hypergeometric equation

                                    x(x – 1)y     +[(α + β +1)x – γ]y + αβy =0.

                                            xx
                                                               x
                   For γ ≠ 0, –1, –2, –3, ... , the function F(α, β, γ; x) can be expressed in terms of the hypergeo-
               metric series:
                                          ∞           k
                                             (α) k (β) k x
                          F(α, β, γ; x)=1 +             ,  (α) k = α(α +1) ... (α + k – 1),
                                               (γ) k  k!
                                          k=1
               which certainly converges for |x| <1.
                   Table S2 shows some special cases when F can be expressed in term of elementary functions.




                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 771
   781   782   783   784   785   786   787   788   789   790   791