Page 787 - Handbook Of Integral Equations
P. 787

TABLE S2
                            Some special cases when the hypergeometric function F(α, β, γ; z)
                                  can be expressed in terms of elementary functions

                  α        β          γ         z                        F
                                                          n           k
                                                            (–n) k (β) k x
                  –n       β          γ         x                       ,  where n =1, 2, ...
                                                               (γ) k  k!
                                                         k=0
                                                          n           k
                                                            (–n) k (β) k x
                  –n       β        –n – m      x                       ,  where n =1, 2, ...
                                                            (–n – m) k k!
                                                         k=0
                  α        β          β         x                     (1 – x) –α
                  α      α +  1       1         x 2             1    (1 + x) –2α  +(1 – x) –2α
                            2         2                         2
                                                                (1 + x) 1–2α  – (1 – x) 1–2α
                  α      α +  1       3         x 2
                            2         2
                                                                     2x(1 – 2α)
                                                             √          2α   √
                                                                                      2α
                  α       –α          1        –x 2       1    1+ x + x  +    1+ x – x
                                                                   2
                                                                                 2
                                      2                   2
                                                           √          2α–1   √        2α–1
                                                                                 2
                                                                 2
                                                             1+ x + x    +   1+ x – x
                                      1
                  α      1 – α                 –x 2                    √
                                      2
                                                                      2 1+ x 2
                                                                        √       2–2α

                  α      α –  1     2α – 1      x               2 2α–2  1+  1 – x
                            2
                                                                    sin[(2α – 1)x]
                  α      1 – α        3       sin x
                                                 2
                                      2                             (α – 1) sin(2x)
                                                                    sin[(2α – 2)x]
                  α      2 – α        3 2     sin x
                                                 2
                                                                    (α – 1) sin(2x)
                                                                    cos[(2α – 1)x]
                                                 2
                  α      1 – α        1       sin x
                                      2
                                                                       cos x
                  α      α +1         1  α      x                 (1 + x)(1 – x) –α–1
                                      2
                                                                       √
                                                                     1+  1 – x    –2α
                  α      α +  1     2α +1       x
                            2
                                                                        2
                                                                         √
                                                                           1 – x    1–2α
                  α      α +  1       2α        x              √  1    1+
                            2
                                                                 1 – x    2
                                                                      1
                  1        1          3          2
                  2        2          2         x                      arcsin x
                                                                     x
                                                                     1
                  1                   3          2
                  2        1          2        –x                      arctan x
                                                                     x
                                                                     1
                  1        1          2         –x                     ln(x +1)
                                                                     x
                                                                     1    1+ x
                  1                   3          2
                  2        1          2         x                       ln
                                                                     2x   1 – x
                                                         m
                                                                                        l
                                                      (–1) (n + m + l + 1)! d n+m     m+l  d F
                                                                               (1 – x)      ,
                                                      n! l!(n + m)! (m + l)! dx n+m     dx l
                 n +1  n + m +1   n + m + l +2  x
                                                               ln(1 – x)
                                                          F = –       ,  n, m, l = 0,1,2, ...
                                                                  x
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 772
   782   783   784   785   786   787   788   789   790   791   792