Page 788 - Handbook Of Integral Equations
P. 788

Basic properties
                   The function F possesses the following properties:

                                    F(α, β, γ; x)= F(β, α, γ; x),
                                    F(α, β, γ; x)=(1 – x) γ–α–β F(γ – α, γ – β, γ; x),
                                                                       x

                                                     –α
                                    F(α, β, γ; x)=(1 – x) F α, γ – β, γ;   ,
                                                                     x – 1
                                 d n            (α) n (β) n
                                    F(α, β, γ; x)=      F(α + n, β + n, γ + n; x).
                                dx n              (γ) n
                   If γ is not an integer, then the general solution of the hypergeometric equation can be written in
               the form
                              y = C 1 F(α, β, γ; x)+ C 2 x 1–γ F(α – γ +1, β – γ +1, 2 – γ; x).

                 Integral representations
                   For γ > β > 0, the hypergeometric function can be expressed in terms of a definite integral:
                                              Γ(γ)       1  β–1  γ–β–1      –α
                              F(α, β, γ; x)=             t  (1 – t)   (1 – tx)  dt,
                                           Γ(β) Γ(γ – β)  0
               where Γ(β) is the gamma function.
                   See M. Abramowitz and I. Stegun (1979) and H. Bateman and A. Erd´ elyi (1973, Vol. 1) for
               more detailed information about hypergeometric functions.


               10.10. Legendre Functions

                 Definitions. Basic formulas
                                                         µ
                                                µ
                   The associated Legendre functions P (z) and Q (z)ofthe first and the second kind are linearly
                                                ν        ν
               independent solutions of the Legendre equation:
                                                                   2 –1
                                                             2
                                       2
                                   (1 – z )y     – 2zy +[ν(ν +1) – µ (1 – z ) ]y =0,

                                          zz    z
               where the parameters ν and µ and the variable z can assume arbitrary real or complex values.
                   For |1 – z| < 2, the formulas
                                         1       z +1    µ/2             1 – z
                                 µ
                               P (z)=                  F –ν,1 + ν,1 – µ,      ,
                                ν
                                       Γ(1 – µ) z – 1                     2
                                 µ                                  µ
                           z – 1  2                 1 – z     z +1  2                  1 – z

                  µ
                 Q (z)= A         F –ν,1 + ν,1 + µ,       + B         F –ν,1 + ν,1 – µ,     ,
                  ν
                           z +1                      2        z – 1                     2
                                       Γ(–µ) Γ(1 + ν + µ)     iµπ  Γ(µ)  2
                                    iµπ
                                A = e                 ,  B = e       ,  i = –1,
                                         2 Γ(1 + ν – µ)           2
               are valid, where F(a, b, c; z) is the hypergeometric series (see (see Section 10.9 of this supplement).
                   For |z| >1,
                                  1
                           2 –ν–1 Γ(– – ν)                 1+ ν – µ  2+ ν – µ  2ν +3  1
                     µ            2      –ν+µ–1  2  –µ/2
                    P (z)= √            z    (z – 1)   F         ,         ,      ,
                     ν                                                              2
                             π Γ(–ν – µ)                     2        2       2    z
                                   1
                                ν
                               2 Γ( + ν)   ν+µ              ν + µ  1 – ν – µ  1 – 2ν  1
                                                2
                           + √     2      z   (z – 1) –µ/2 F –  ,        ,      ,     ,
                               π Γ(1 + ν – µ)                2       2       2    z 2
                               √
                                π Γ(ν + µ +1)  –ν–µ–1  2  µ/2     2+ ν + µ 1+ ν + µ 2ν +3 1
                            iπµ
                     µ
                    Q (z)= e             3  z     (z – 1)  F         ,        ,      ,    .
                     ν
                                2 ν+1 Γ(ν + )                    2        2      2    z 2
                                         2
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 773
   783   784   785   786   787   788   789   790   791   792   793