Page 783 - Handbook Of Integral Equations
P. 783

Integral representations.
                   The functions I ν (x) and K ν (x) can be represented in terms of definite integrals:

                                    x ν        1           2 ν–1/2               1
                        I ν (x)=          1    exp(–xt)(1 – t )  dt   (x >0, ν > – ),
                                                                                 2
                                   2 Γ(ν + )
                               π 1/2 ν       –1
                                          2
                                 ∞

                       K ν (x)=    exp(–x cosh t) cosh(νt) dt         (x > 0),
                                0
                                   1       ∞
                       K ν (x)=     1       cos(x sinh t) cosh(νt) dt  (x >0, –1< ν < 1),
                               cos  πν   0
                                   2
                                   1       ∞
                       K ν (x)=     1       sin(x sinh t) sinh(νt) dt  (x >0, –1< ν < 1).
                               sin  πν   0
                                   2
               For integer ν = n,
                                          π
                                      1

                               I n (x)=    exp(x cos t) cos(nt) dt  (n =0, 1, 2, ... ),
                                      π
                                         0

                                        ∞                 ∞  cos(xt)
                               K 0 (x)=   cos(x sinh t) dt =  √    dt    (x > 0).
                                                               2
                                       0                 0    t +1
                 Integrals with modified Bessel functions
                  x                 x λ+ν+1         λ + ν +1 λ + ν +3     x 2
                    λ
                   x I ν (x) dx =  ν            F         ,         , ν +1;   ,   Re(λ+ν)> –1,
                 0            2 (λ + ν +1)Γ(ν +1)     2        2           4
               where F(a, b, c; x) is the hypergeometric series (see Section 10.9 of this supplement),
                  x            2 ν–1 Γ(ν)       λ – ν +1     λ – ν +3  x 2
                    λ
                   x K ν (x) dx =      x λ–ν+1 F       ,1 – ν,       ,
                 0             λ – ν +1           2             2      4
                               2 –ν–1 Γ(–ν)  λ+ν+1    λ + ν +1  λ + ν +3  x 2
                             +          x     F         ,1 + ν,        ,    ,    Re λ > |Re ν| – 1.
                                λ + ν +1            2             2      4

                 Asymptotic expansions as x →∞
                                           M
                                                                2
                                                            2
                                                     2
                                                                       2
                                                                                 2
                                  e x           m  (4ν – 1)(4ν – 3 ) ... [4ν – (2m – 1) ]
                         I ν (x)= √    1+    (–1)                   m               ,
                                  2πx                         m!(8x)
                                          m=1
                                              M
                                                   2      2   2      2         2
                                    π  –x        (4ν – 1)(4ν – 3 ) ... [4ν – (2m – 1) ]
                         K ν (x)=     e   1+                                      .
                                   2x                        m!(8x) m
                                             m=1
               The terms of the order of O(x –M–1 ) are omitted in the braces.
               10.8. Degenerate Hypergeometric Functions
                 Definitions. Basic Formulas
                   The degenerate hypergeometric functions Φ(a, b; x) and Ψ(a, b; x) are solutions of the degenerate
               hypergeometric equation

                                            xy    xx  +(b – x)y – ay =0.
                                                         x


                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 768
   778   779   780   781   782   783   784   785   786   787   788