Page 784 - Handbook Of Integral Equations
P. 784

TABLE S1
                                   Special cases of the Kummer function Φ(a, b; z)


                   a       b      z               Φ                    Conventional notation
                   a       a      x               e x

                                               1  x
                   1       2     2x             e sinh x
                                               x
                                                                    Incomplete gamma function
                                                 –a
                   a     a+1     –x           ax γ(a, x)                         x  –t a–1
                                                                      γ(a, x)=   e t   dt
                                                                               0
                                                √                         Error function
                   1       3       2             π                               x
                                 –x                erf x                   2           2
                   2       2                    2                    erf x = √ π  0  exp(–t ) dt

                           1     x 2        n!     1    –n             Hermite polynomials
                  –n                            –     H 2n (x)
                           2      2        (2n)!  2                             2 d n     2
                                                                             n x
                                                                     H n =(–1) e     e –x  ,
                           3     x 2       n!     1    –n                        dx n
                  –n                             –    H 2n+1 (x)          n =0,1,2, ...
                           2      2      (2n+1)!  2
                                                                       Laguerre polynomials
                                                                           x –α
                                                                          e x   d n
                                                                                     –x n+α
                                               n!  (b–1)          L (α) (x)=        e x     ,
                                                                    n
                  –n       b      x               L n  (x)                  n!  dx n
                                              (b) n
                                                                            α = b–1,
                                                                     (b) n = b(b+1) ... (b+n–1)
                                                   x
                    1                            x     –ν
                 ν+      2ν+1    2x       Γ(1+ν)e       I ν (x)
                    2                              2                 Modified Bessel functions
                                             3     x    2
                                                     –n–  1                  I ν (x)
                 n+1     2n+2    2x    Γ n+    e x       I n+  1 (x)
                                             2     2        2
                   In the case b ≠ 0, –1, –2, –3, ... , the function Φ(a, b; x) can be represented as Kummer’s series:

                                                         ∞       k
                                                            (a) k x
                                           Φ(a, b; x)=1 +         ,
                                                            (b) k k!
                                                        k=1
               where (a) k = a(a +1) ... (a + k – 1), (a) 0 =1.
                   Table S1 presents some special cases when Φ can be expressed in terms of simpler functions.
                   The function Ψ(a, b; x)isdefined as follows:

                                      Γ(1 – b)          Γ(b – 1)  1–b
                          Ψ(a, b; x)=         Φ(a, b; x)+      x  Φ(a – b +1, 2 – b; x).
                                    Γ(a – b +1)          Γ(a)

                 Some transformations and linear relations
                   Kummer transformation:

                                     x
                          Φ(a, b; x)= e Φ(b – a, b; –x),  Ψ(a, b; x)= x 1–b Ψ(1 + a – b,2 – b; x).



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 769
   779   780   781   782   783   784   785   786   787   788   789